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Background: For complex patients in the intensive care unit or in the operating room, many questions regarding
their haemodynamic management cannot be answered with simple clinical examination. In particular, arterial
pressure allows only a rough estimation of cardiac output. Transpulmonary thermodilution is a technique that
provides a full haemodynamic assessment through cardiac output and other indices.

Main body: Through the analysis of the thermodilution curve recorded at the tip of an arterial catheter after the
injection of a cold bolus in the venous circulation, transpulmonary thermodilution intermittently measures cardiac
output. This measure allows the calibration of pulse contour analysis. This provides continuous and real time
monitoring of cardiac output, which is not possible with the pulmonary artery catheter. Transpulmonary
thermodilution provides several variables beyond cardiac output. It estimates the end-diastolic volume of the four
cardiac cavities, which is a marker of cardiac preload. It provides an estimation of the systolic function of the
combined ventricles. It is more direct than the pulmonary artery catheter, but does not allow the distinct
estimation of right and left cardiac function. It is easier and faster to perform than echocardiography, but does not
provide a full evaluation of the cardiac structure and function. Transpulmonary thermodilution has the unique
advantage of being able to estimate at the bedside extravascular lung water, which quantifies the volume of
pulmonary oedema, and pulmonary vascular permeability, which quantifies the degree of a pulmonary capillary
leak. Both indices are helpful for guiding fluid strategy, especially in case of acute respiratory distress syndrome.

Conclusions: Transpulmonary thermodilution provides a full cardiovascular evaluation that allows one to answer
many questions regarding haemodynamic management. It belongs to the category of “advanced” devices that are
indicated for the most critically ill and/or complex patients.
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Background

A task force of the European Society of Intensive Care
Medicine recently recommended using advanced
haemodynamic monitoring in severe shock and com-
plex situations and stated that the pulmonary artery
catheter and transpulmonary thermodilution (TPTD)
devices are suitable for this purpose [1]. The TPTD
technique emerged in the early 2000s. The PiCCO
(Pulsion Medical Systems, Munich, Germany) and the
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Volume View (Edwards LifeSciences, Irvine, United States
of America) devices measure cardiac output but also pro-
vide several other valuable pieces of haemodynamic infor-
mation (Fig. 1). In our opinion, the approach of TPTD is
quite different from pulmonary artery catheterisation in
many repects. The attractiveness of this approach and the
fact that the technique is easy to set up likely explain why
TPTD use has increased. Which methods are used by
TPTD to measure cardiac output and the other variables
and what can be said regarding the validation of these
variables? What are the indications of TPTD and what
is its place in the haemodynamic management of ICU
and surgical patients? These are the questions we address
in this review.
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Fig. 1 Haemodynamic variables provided by transpulmonary thermodilution and calibrated pulse contour analysis, with their meaning, utility and

analysis (in real-time)
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Measurement of cardiac output

How does TPTD measure cardiac output?

TPTD requires the injection of a bolus of cold saline in
the superior vena cava territory. At the tip of a femoral
arterial catheter (the tip stands in the iliac artery), a ther-
mistor senses the decrease in blood temperature. As with
standard pulmonary thermodilution, TPTD measures car-
diac output by using the Stewart—Hamilton principle.
Compared to the pulmonary artery catheter, the difference
is that, with TPTD, cold saline is injected not in the right
atrium but in a central vein and the blood temperature is
measured not in the pulmonary artery but in a systemic
artery.

Is TPTD accurate for measuring cardiac output?
From all the studies that have investigated the validity of
TPTD [2], it can be reasonably concluded that this
measurement of cardiac output is accurate compared to
the pulmonary artery catheter and the Fick method. Be-
sides its accuracy, the ability of TPTD devices to reliably
track changes in cardiac output is also important. It is
recommended to average the result of three bolus injec-
tions [3]. In such a case, the smallest change in cardiac
output that can be accurately detected by TPTD is 12%
(this is the “least significant change” of the technique) [4].
It is comparable with the pulmonary artery catheter [5].
The reliability of the measurement requires a significant
difference in blood temperature induced by TPTD. Ac-
cording to the manufacturer’s recommendations, 15 mL
of saline <8 °C must be injected. Therapeutic hypothermia
does not affect the precision of the measurement of
cardiac output by TPTD [6]. It seems that boluses at room

temperature create a sufficient difference [7], although this
may result in a slight but significant overestimation of car-
diac output [8]. Very importantly, great caution should be
applied when performing thermodilution (volume of injec-
tion, absence of leaks in the circuit, regularity of the speed
of injection, bolus temperature), since any error in the
thermodilution curve may affect the estimation of cardiac
output but also of all variables that are inferred from the
curve analysis.

When the venous catheter is inserted not in the superior
vena cava but in a femoral vein, contralateral to the arter-
ial catheter, the measurement of cardiac output is un-
affected, while it is not the case for thoracic volumes
measured by the technique (see below) [9, 10]. Of course,
the arterial catheter must not be inserted in the femoral
site on the same side as the venous catheter used for injec-
tion. Injecting the bolus in a port-a-catheter provides reli-
able measurements of cardiac output and its variations
[11]. The technique cannot be used in case of extracorpor-
eal membrane oxygenation. By contrast, continuous veno-
venous haemofiltration does not affect the reliability of
cardiac output measurement by TPTD [12-14], even for
high blood pump flows [13]. The thermistor-tipped cath-
eter is most often inserted in the femoral artery, but the
axillary, brachial and radial (long catheter) arteries may
also be used, although this requires that the elbow remains
in the extended position.

What are the limitations of TPTD for measuring cardiac
output?

One drawback of TPTD is that recirculation of the cold
indicator is larger than with pulmonary thermodilution
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[2]. Also, if cardiac output is very low, typically below
2 L/min, TPTD devices do not provide any measure be-
cause of uncertainty about the technique’s reliability.
The loss of injectate temperature is greater than with
conventional thermodilution. In this regard, high vol-
umes of lung water may theoretically amplify the loss
of injectate temperature through the pulmonary circu-
lation, even though this phenomenon is likely negligible
[15]. Finally, the main drawback of TPTD for measur-
ing cardiac output is that it performs only intermittent
measurements (Table 1). It cannot detect short term
changes, as induced by mechanical ventilation, passive
leg raising [16] or end-expiratory occlusion [17] tests,
for instance.

Calibration of pulse contour analysis

Besides TPTD, the PiCCO and VolumeView devices esti-
mate cardiac output by analysis of the arterial curve
(“pulse contour”) sampled through the arterial catheter.
This allows real-time monitoring of cardiac output.

Pulse contour analysis is based on the relationship be-
tween stroke volume and the amplitude and shape of the
aortic pressure curve [18]. Devices analyse the geometry
of the pressure waveform recorded in a peripheral artery,
estimate the arterial curve at the aortic level, and esti-
mate stroke volume from the geometrical properties of
the pressure waveform through proprietary algorithms.

The measure of cardiac output by pulse contour analysis
is very precise, more so than with TPTD [5], but it may
drift over time, especially when the arterial resistance
changes [19-21]. Then, the PiCCO and Volume View de-
vices calibrate pulse contour analysis by the value obtained
by TPTD each time TPTD is performed. Compared to
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uncalibrated pulse contour analysis devices, calibrated
ones have better accuracy, especially when arterial tone
changes to a significant extent, for instance under vaso-
pressors [20, 22]. Calibration of pulse contour analysis
should be encouraged after a 1-h calibration-free period
[23]. This does not mean that calibration must be
performed every hour in patients with a TPTD device,
but rather that, when cardiac output is mandatory for
interpreting the haemodynamic condition, calibration of
pulse contour analysis must be performed if 1 h or more
has elapsed since the last calibration (Table 1).

Assessment of cardiac preload: global end-diastolic
volume

What is the global end-diastolic volume?

Besides cardiac output, TPTD estimates some intratho-
racic volumes of great pathophysiological interest (Fig. 1).
This estimation is based on the analysis of both the
thermodilution curve and its logarithmic transformation
(Fig. 2). According to the Stewart—Hamilton principle,
the total distribution volume of the cold indicator be-
tween the injection and detection sites, the intrathoracic
thermal volume, is obtained by multiplying cardiac output
by the mean transit time of the cold indicator. According
to the Newman principle, the largest distribution volume
of the cold indicator between the injection and detection
sites, the total pulmonary volume, is obtained by multiply-
ing cardiac output by the downslope time of the thermodi-
lution curve. Then, subtracting the pulmonary thermal
volume from the intrathoracic thermal volume estimates
the global end-diastolic volume (GEDV). This corresponds
to the volume of all four cardiac chambers at the end of
diastole (Fig. 2). Whereas the PiCCO device assesses GEDV

Table 1 Advantages and drawbacks of measurements performed by transpulmonary thermodilution and calibrated pulse contour

analysis

Variable Main advantages

Main drawbacks

Cardiac output measured by TPTD

Continuous measurement
Precise measurement

Cardiac output measured by pulse
contour analysis

As reliable as pulmonary thermodilution

Does not provide a continuous measurement

Requires regular recalibration

Assesses short-term and small changes

Global end-diastolic volume
markers of preload

Stroke volume variation
responsiveness

Cardiac function index, global ejection

fraction systolic function

Extravascular lung water

Pulmonary vascular permeability index

Better reflects cardiac preload than pressure

Continuous automated assessment of fluid

Can be used as an alarm for decreased LV

Directly estimates the volume of lung oedema

Directly estimates lung permeability

Does not distinguish between the right and left ventricles
Less directly reflects the risk of pulmonary oedema than
PAOP

Cannot be used in case of spontaneous breathing, cardiac
arrhythmias and ARDS

Overestimate LV systolic function in case of right
ventricular dilation

Indirect markers of cardiac systolic function

Do not precisely assess cardiac structure and function

Unreliable in case of pulmonary embolism, lung resection,
large pleural effusions

Same as for extravascular lung water

Distinguishes hydrostatic from permeability

pulmonary cedema

ARDS acute respiratory distress syndrome, LV left ventricular, PAOP pulmonary artery occlusion pressure, TPTD transpulmonary thermodilution
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according to the Newman principle, the VolumeView
device assesses it from a different geometrical analysis of
the thermodilution curve, which is based on the slopes of
the up and down parts of the curve and a proprietary
function [24]. Nevertheless, both techniques have been
demonstrated to be interchangeable [25].

Is GEDV valid as a measure?
GEDV behaves as it is typically expected from a marker
of cardiac preload [26]. In patients with septic shock,
GEDV increased with fluid administration but remained
constant during dobutamine administration, despite
similar increases of cardiac output [26]. It has been sus-
pected that there is a mathematical coupling between
GEDV and cardiac output since both variables are de-
rived from the same thermodilution curve, but this has
not been confirmed by clinical investigations [26—28].
GEDV includes the cardiac volume and also a part of
the superior vena cava volume and the volume of the

aorta that are between the bolus injection site and the
thermistor. This may explain why GEDV is larger than
the actual volume of the four cardiac chambers. Never-
theless, these vascular volumes are roughly unchanged
during changes in cardiac preload. It has been demon-
strated that GEDV reliably tracks the changes in volumet-
ric preload induced by volume expansion when compared
to echocardiographic measurements, better than the
volumetric assessment allowed by some modified versions
of the pulmonary artery catheter [29, 30].

The least significant change of GEDV when three cold
boluses are injected is 12% [4]. If boluses are injected
through the femoral vein, the normal values of GEDV
are higher than if they are injected through the superior
vena cava, since it includes the volume of the inferior
vena cava [9, 10]. They can be estimated from formulas
using a patient’s biometric data [10]. The changes in
“femoral” GEDV are correlated with those of “superior
vena cava” GEDV [10].
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Measures of cardiac preload volumes or pressures?

It has been argued that volume markers of cardiac pre-
load (end-diastolic volume measured by TPTD or echo-
graphy) are better than pressure markers (central venous
pressure, pulmonary artery occlusion pressure (PAOP))
since studies reported that left ventricular end-diastolic
dimensions were better correlated with stroke volume
than PAOP [31-33].

Nevertheless, two points must be kept in mind. First,
if the ventricular compliance is low, small changes in
volume induce larger changes in pressure, and changes
in volume may underestimate changes in cardiac pre-
load. Second, the risk of hydrostatic pulmonary oedema,
the formation of which directly depends on the hydro-
static pressure gradient between the pulmonary capillary
and interstitium [34], is better indicated by PAOP than
by any volume indices.

A specific limitation of GEDV is that it does not distin-
guish between left and right cardiac preload. In practice,
in case of right ventricular dilation, GEDV is increased
while the left ventricular preload is normal [35, 36].

How do we use GEDV in practice?

Like all static markers of cardiac preload, GEDV is a
poor indicator of fluid responsiveness [37]. Nevertheless,
this does not mean that it is useless. Knowing the level
of cardiac preload is essential for determining the shock
origin when it is unclear. Also, during volume expansion,
cardiac preload must be measured in order to check that
it actually increases and that fluid has not just been diluted
in the vasodilated venous reservoir [26].

Cardiac systolic function

Two indices provided by TPTD

TPTD estimates the left ventricular systolic function
through the cardiac function index and the global ejection
fraction. Cardiac function index is the ratio of cardiac out-
put (measured by TPTD) and GEDV (Fig. 1). The global
ejection fraction is equal to stroke volume divided by
GEDV and multiplied by 4, assuming that the left ventricu-
lar end-diastolic volume is a quarter of GEDV. Of course,
this is a rough assumption since all cardiac cavities are not
of similar volume.

Some studies showed a good correlation between ab-
solute values of cardiac function index and of the left
ventricular ejection fraction (LVEF) measured by echo-
cardiography in animals [38] and in patients [35, 36, 39].
Some specific cut-off values of cardiac function index
and global ejection fraction accurately detected low
values of LVEF [35, 36, 38, 40]. Moreover, changes in
cardiac function index and global ejection fraction track
changes in echocardiographic LVEF [35, 36, 40],
especially when induced by inotropes [36, 40]. The least
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significant change of cardiac function index is 12% when
three cold boluses are injected [4].

What are the limitations?

As for GEDV, the main limitation of cardiac function
index and global ejection fraction comes from the dila-
tion of the right cardiac chambers. In this situation, the
GEDV is increased and the cardiac function index and
global ejection fraction are decreased while the left ven-
tricular contractility is unchanged [35, 36, 38, 40]. Also,
although this has not been formally investigated, cardiac
function index and global ejection fraction likely share
with LVEF the limitation that they depend on left ven-
tricular preload and afterload [41]. Moreover, even though
it is possible to identify threshold values in order to detect
low LVEE, the correlation between LVEF and cardiac func-
tion index obviously cannot be perfect since the cardiac
function index is a marker of the “global” cardiac systolic
function [35, 36, 38, 40] (Table 1). Echocardiography re-
mains the most accurate bedside technique for measuring
LV systolic function. Finally, echocardiography has the ad-
vantage of performing a complete assessment of cardiac
structure and function, while it is not allowed by TPTD
(Table 1).

What is the place of TPTD indices of systolic function in
practice?

Echocardiography requires many more skills than TPTD.
Moreover, it is rather tedious and time consuming, so it
may not be performed as often as it should be during
acute circulatory failure. Though the correlation between
cardiac function index and LVEF is not perfect [35, 36, 39],
every time thermodilution measurements are performed,
global ejection fraction and cardiac function index give a
rapid estimation of cardiac systolic function. They can
easily warn clinicians that the left ventricular contractility is
deteriorating and encourage them to perform echocardiog-
raphy, which would not have been performed otherwise. In
a patient that is receiving inotropes, TPTD systolic function
indices also allow clinicians to follow the treatment ef-
fect [36].

Extravascular lung water

Extravascular lung water (EVLW) is fluid that accumulates
in the interstitial and alveolar spaces (Fig. 1). EVLW in-
creases because of increased lung permeability or because
of increased hydrostatic pressure in the pulmonary capil-
laries, or both [42]. Since it is the main pathophysiological
pattern of hydrostatic pulmonary oedema and of acute
respiratory distress syndrome (ARDS), it might be of very
special help for establishing diagnosis, assessing the sever-
ity of the disease and guiding the therapeutic strategy.
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How does TPTD measure lung water?

With the PiCCO device, the estimation of EVLW is per-
formed by subtracting the intrathoracic blood volume
from the intrathoracic thermal volume (Fig. 2). The in-
trathoracic blood volume is estimated by multiplying
GEDV by 1.25 [43]. The VolumeView device is based on
the same principle but, as explained above, it estimates
GEDV differently from the PiCCO device [24, 25] (Fig. 2).
However, a good agreement between the values provided
by both devices has been reported [24, 25].

The EVLW value is indexed to the predicted body
weight, not the actual body weight, in order to avoid
underestimation of EVLW [44]. When three cold bo-
luses are used, the least significant change in EVLW is
12% [4]. Using room temperature boluses results in a
slight but significant overestimation of EVLW [8].

Is the estimation of EVLW valid?

Several arguments support the reliability of the estima-
tion of EVLW by TPTD. First, it has been validated
against transpulmonary thermo-dye dilution in humans
[43], and against gravimetry, the reference technique, in
animals [45, 46] and humans [47]. Second, experimental
[48, 49] and clinical [4, 50] studies demonstrated that
the TPTD estimation of EVLW is precise. In an autopsy
study in 30 patients, the correlation coefficient between
EVLW measured by TPTD and by gravimetry was 0.90
[47]. TPTD was able to detect the small and short-term
changes in EVLW induced by bronchoalveolar lavage
[50]. With TPTD, it is also possible to detect the rapid
increase in EVLW that occurs during a weaning-induced
pulmonary oedema, sometimes over a few minutes only
[51]. Third, the reliability of the TPTD estimation of
EVLW is indirectly supported by studies showing that
EVLW predicts mortality in critically ill patients [52-56]
independent of other severity indices [52-54], which
would be impossible to establish if the TPTD measure-
ment of EVLW was unreliable.

What are the potential limitations of EVLW measurement?
In case of vascular occlusion due to pulmonary embolism,
the volume of distribution of the cold indicator is reduced,
resulting in underestimation of EVLW [57] (Table 1).
Nevertheless, the occlusion of some small-diameter
vessels during ARDS, which results from vascular re-
modelling, microthrombi, hypoxic vasoconstriction or
positive end-expiratory pressure (PEEP), has no impact
on the TPTD estimation of EVLW [58, 59].

The theoretical effects of PEEP on the measurement of
EVLW by TPTD are contradictory. PEEP squeezes some
pulmonary vessels and reduces the distribution volume
of the cold indicator. By contrast, PEEP could recruit
some atelectatic regions and alleviate the hypoxic constric-
tion that prevents the thermal indicator from reaching
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such regions. By decreasing cardiac output, PEEP may also
reduce the pulmonary microvascular hydrostatic pressure
and hence EVLW. On the contrary, PEEP increases the
central venous pressure, which may impede the lymphatic
drainage of EVLW. Studies investigating the net effect
of these mechanisms in clinical practice are scarce.
One study reports that, in ARDS patients, there was a
strong correlation between the EVLW measured by
transpulmonary thermo-dye dilution and lung weight
measured by computed tomography over a broad range
of PEEP levels [60].

Lung resection logically decreases the volume of EVLW
[61, 62] but TPTD may overestimate the remaining vol-
ume of EVLW [61]. Similarly, the estimation of EVLW by
TPTD is significantly affected by one-lung ventilation [63].

The type of ARDS may affect the reliability of TPTD
for estimating EVLW. In heterogeneous forms of ARDS,
the pulmonary blood flow may be redistributed away
from oedematous areas, which could lead to underesti-
mation of EVLW [64], even though this redistribution
phenomenon has been demonstrated to be severely
blunted [65].

Pleural effusions of large volume could induce an
overestimation of EVLW because the cold indicator
also diffuses in the pleural liquid [66]. Nevertheless, a
study found that, by contrast, removing pleural effusion
increased EVLW, perhaps by alleviating atelectasis in
contact with the pleural effusion [67]. As for cardiac
output or GEDV, renal replacement therapy [12, 13]
and therapeutic hypothermia [6] do not alter the meas-
urement of EVLW.

Pulmonary vascular permeability index
TPTD estimates the permeability of the alveolo-capillary
barrier through the pulmonary vascular permeability index,
which is the ratio of EVLW over pulmonary blood volume,
i.e. the ratio of the fluid volume that is out of the vessels
over the fluid volume that remains in the vessels [68—70].
This index has been validated in animal [45] and clinical
[68—70] studies showing that it is lower in hydrostatic pul-
monary oedema than in ARDS. A pulmonary vascular per-
meability index value of 3 was found to be the best
threshold for distinguishing between both forms of pul-
monary oedema [68, 69] and should be considered as the
maximal normal value. The number of human studies on
the index is small for the moment, so that the normal value
might be slightly different from 3. The pulmonary vascular
permeability index shares the same limitations as EVLW.

How do we use EVLW and the pulmonary vascular
permeability index in clinical practice?

Definition of ARDS

Although an increase in lung water and permeability is the
pathophysiological hallmark of ARDS, its current definition
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does not take them into account [71]. In order to exclude
hydrostatic pulmonary oedema, the Berlin definition only
stipulates that the filling pressure of the left ventricle should
not be elevated. Not only is this obviously a very indirect
estimation of lung permeability, but also an elevated filling
pressure of the left ventricle does not preclude that lung
permeability is increased, especially after a few days of fluid
resuscitation. Moreover, some clinical studies suggest that
taking EVLW and/or pulmonary vascular permeability
index values into account has helped to predict the progres-
sion to lung injury in patients with risk factors 2.6 + 0.3 days
before the patients met American-European Consensus
Conference criteria of ARDS [72]. Changes in the pulmon-
ary vascular permeability index should thus be taken into
consideration for following worsening or improvement of
ARDS in clinical practice. In another study, the value of
EVLW was in close relationship with the severity of ARDS
as defined by the categories of the Berlin definition [73]. It
has also been shown that the use of EVLW improves by up
to eightfold the post-test odds ratio for the diagnosis of
acute lung injury, ARDS and severe lung injury [70]. At the
least, all these reasons argue for using TPTD in order to
better characterise the ARDS pattern [74, 75]. Of course,
the cost of such devices prevents their use as a standard for
every ARDS patient across the world.

Fluid management

In order to avoid fluid overload in critically ill patients,
fluids should be administered only if preload responsive-
ness has been assessed by appropriate indices [76]. In
addition, the risk of fluid therapy should also be consid-
ered. EVLW indicates the volume of water that has
already leaked toward the lung interstitium and alveoli,
while the pulmonary vascular permeability index indi-
cates a priori the risk of leakage. In patients with ARDS,
if EVLW and the pulmonary vascular permeability index
are much higher than their normal values, fluid adminis-
tration should be as restricted as possible.

In the context of ARDS, it has been reported that
management based on protocols including EVLW mea-
surements is safe [77], leads to a lower cumulative fluid
balance [78], decreases ICU mortality [77], and reduces
the duration of mechanical ventilation [78] and of ICU stay
[78]. Some studies have provided different results. In a
mixed population of ICU patients, TPTD was associated
with an increased fluid balance [79]. In another study,
TPTD-based fluid management did not improve outcome
when compared to central venous pressure-based fluid
[80]. Nevertheless, the protocols associated with the two
latter studies have been strongly criticised [81, 82]. In stud-
ies investigating monitoring devices, the effect on prognosis
is tightly related to the quality of the protocol attached to
the device. Whatever the device, results from questionable
management protocols are inherently questionable [81].
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Weaning from mechanical ventilation

Our group demonstrated that an increase in EVLW dur-
ing a spontaneous breathing trial was able to diagnose
weaning-induced pulmonary oedema with good accur-
acy, in particular with 100% specificity [51]. This does
not mean that a TPTD device should be set up only for
the purpose of detecting weaning-induced pulmonary
oedema, but rather that, if the device is already in place,
one should pay attention to EVLW during weaning trials.

Side effects of TPTD

TPTD is an invasive technique although the invasiveness
is not very different from the pulmonary artery catheter,
even though it is easier to set up. Nevertheless, in a mul-
ticentre prospective series of 514 patients, the most
common complications were small local haematomas
after insertion (4.5%) and removal (1.2%) of the catheter.
Other complications such as ischaemia (0.4%), pulse loss
(0.4%) or femoral artery thrombosis (0.2%) were uncom-
mon and transient, and all resolved with catheter removal
or embolectomy [83]. This study is the only one that in-
vestigated such complications, and these results should be
taken with caution. Nevertheless, in our opinion, they
suggest that the technique has acceptable rates of com-
plications when compared to the other risks incurred
by critically ill patients.

The technique is contraindicated in case of femoral
vascular prostheses. In our practice, in patients with
arteriopathy, if two attempts to insert the catheter and
the guide fail, we abandon the option of using the tech-
nique in this patient without further attempts. The weight
of these complications must be compared to the severity
of the patient condition, unacceptable for monitoring sur-
gical interventions of patients at low risk but justified for
high-risk surgical patients or critically ill patients [84].

The place of TPTD among haemodynamic
monitoring devices

Haemodynamic monitoring: for which patients?

In the peri-operative setting

In the peri-operative setting, haemodynamic monitoring
should be used to detect hypovolemia or low oxygen de-
livery for early prevention. In spite of its invasiveness,
advanced haemodynamic monitoring should be preferred
over less invasive devices in two circumstances. The first is
when the patient is particularly complex and when more
variables than just cardiac output are mandatory, such as
during cardiac surgery and prolonged major surgery for in-
stance [84]. The second is when less invasive techniques
are more likely to be unreliable, as for instance uncalibrated
pulse contour analysis during liver surgery because major
changes in vasomotor tone are expected [19]. Several
studies conducted in cardiac surgery and major abdominal
surgery have shown that cardiac output monitoring led to
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a reduction in the rate of complications and the length of
stay [85].

In the intensive care unit

In contrast to the peri-operative setting, no study has
compared management with versus without haemodynamic
monitoring in terms of mortality. In this context, demon-
strating such a benefit would be very difficult. The progno-
sis of critically ill patients is influenced by so many factors
that it is hard to believe a monitoring device alone could in-
fluence mortality. Many other monitoring techniques are
used in ICU patients, such as electrocardiogram or blood
gas analysis, while they have never been shown to improve
prognosis. The decision to use haemodynamic monitoring
in severe ICU patients should not be guided by outcome
studies but by studies showing that it provides more
complete information than basic monitoring with heart
rhythm and blood pressure. In this regard, changes in arter-
ial pressure only roughly detect changes in cardiac output
[86, 87], especially when vasopressors change the arterial
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tone [86], monitoring EVLW can lead to decreases in fluid
balance and advanced monitoring may change clinical deci-
sions [88].

Based on such arguments, recent recommendations
state that haemodynamic monitoring is mandatory in
patients with hypotension that resists initial fluid therapy
[1] (Fig. 3). Advanced monitoring is particularly war-
ranted in patients with ARDS and in patients where the
dose of vasopressor is high and/or increasing (Fig. 3).
Nevertheless, it seems that this is less common in prac-
tice [89] than recommended by a recent consensus [1].

Which TPTD device?

Today, two TPTD devices are commercially available:
the PICCO system, which is integrated in the ProAQT
platform (Pulsion Medical Systems, Munich, Germany),
and the VolumeView system, which is incorporated in
the EV1000 platform (Edwards Life Sciences, Irvine,
USA). Of course, the manufacturers’ software packages
are proprietary and not open, but both systems work on
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the same principles and technological differences be-
tween them are likely very small. In two studies, the
measurements of cardiac output and volumetric vari-
ables were similar between both devices [24, 25]. In one
study, pulse contour analysis by the VolumeView method
was found to have a slightly better precision than by the
PiCCO system [90]. The VolumeView device overesti-
mates GEDV and the derived variables when the inferior
vena cava route is used for injecting the cold bolus, and
corrections that have been described for the PiCCO re-
duce this overestimation [91].

TPTD versus pulmonary artery catheter?

TPTD/calibrated pulse contour analysis and traditional
pulmonary thermodilution are both sophisticated tech-
niques that provide several haemodynamic variables be-
sides cardiac output. In this regard, both are suitable
for complex and critically ill patients [1, 3, 84, 92]. An
advantage of traditional pulmonary thermodilution is
that it does not require recalibration. With the pulmon-
ary artery catheter, however, semi-continuous estima-
tion of cardiac output is not measured in real time and
the response to a change in cardiac output is delayed
by several minutes [93]. With calibrated pulse contour
analysis, the displayed value of cardiac output is an
average calculated over a few seconds only. Besides car-
diac output, both techniques do not provide the same
variables. PAOP has been repeatedly demonstrated to
be unreliable for predicting fluid responsiveness, while
calibrated pulse contour analysis allows one to perform
passive leg raising or end-expiratory occlusion tests [76].

In order to decide to stop fluid administration, a given
value of PAOP may correspond to different risk levels of
increasing EVLW depending on the level of lung perme-
ability [42]. For instance, fluid infusion at a PAOP of
12 mmHg would induce absolutely no lung oedema in a
patient with normal lungs, while it would be extremely
prone to increase EVLW in a patient with severe ARDS.
Regarding the systolic function, in our opinion, the car-
diac function index and global ejection fraction provide
a more direct estimation than TPTD.

Unlike TPTD devices, the pulmonary artery catheter
provides a direct estimation of pulmonary artery resist-
ance. Right heart failure and severe pulmonary hyperten-
sion represent specific indications for the pulmonary
artery catheter (Fig. 3) [1, 92]. Nevertheless, errors in the
measurement of cardiac output resulting from tricuspid
regurgitations must be kept in mind, even though it
seems to exist mostly for severe regurgitations [94]. Also,
the pulmonary artery catheter measures both central
venous pressure and pulmonary artery pressure, allow-
ing the estimation of right and left cardiac functions,
while TPTD only estimates the global cardiac function.
Another strong advantage of the pulmonary artery catheter
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is that it directly measures oxygen saturation of mixed ven-
ous blood, not central venous blood.

In conclusion, both types of devices can be used to
monitor the haemodynamic status of critically ill patients
with shock, although they provide clinicians with different
answers to their questions. Clinicians should choose the
device they know the best. The pulmonary artery catheter
has a specific indication in case of acute right heart failure
and acute pulmonary hypertension [1] (Fig. 3).

TPTD or echocardiography? No choice: TPTD and
echocardiography!

In our opinion, clinicians do not need to choose between
TPTD devices and echocardiography. Echocardiography
is unique for a complete assessment of cardiac structure
and function. It must be performed early in every patient
with acute circulatory failure [1, 3] (Fig. 3). Nevertheless,
it is difficult to consider echocardiography as a device
for haemodynamic monitoring because of the time that
is required for the ultrasound examination [95]. An advan-
tage of TPTD over echocardiography is that nurse-driven
approaches can be used and that several patients can be
evaluated simultaneously. In addition, TPTD provides
clinicians with information that is not offered by echo-
cardiography, like EVLW. Our practice for monitoring
the most critically ill patients is a combination of TPTD
for continuous and repeated haemodynamic monitoring
and echocardiography for punctual assessments of cardiac
function (Fig. 3). In addition, TPTD measurements may
trigger recourse to echocardiography if global ejection
fraction or cardiac function index suddenly decrease.

Conclusions

Beyond cardiac output, TPTD provides several indices
that help answer questions that clinicians ask themselves
during haemodynamic management. In particular, it is a
unique tool for guiding fluid therapy because it estimates
lung water and permeability. Its place is in the manage-
ment of the most critically ill and/or complex patients,
which requires a reliable, precise and global vision of the
cardiopulmonary condition. It will be very interesting to
see how progress in technology in the era of digital
health will transform and improve TPTD [96].
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