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Abstract

Background: We aimed to synthesize up-to-date trials to validate the effects of neuromuscular blocking agent
(NMBA) use in patients with moderate-to-severe acute respiratory distress syndrome (ARDS).

Methods: Several databases including PubMed, EMBASE, Web of Science, and Cochrane Central Register were
searched up to November 14, 2019. All randomized trials investigating the use of NMBAs in patients with
moderate-to-severe ARDS and reporting mortality data were included in the meta-analysis. The primary outcome
was mortality, and the secondary outcomes were clinical outcomes, including respiratory physiological parameters,
incidence of barotrauma, ICU-free days, and ventilation-free days.

Results: A total of 7 trials enrolling 1598 patients were finally included in this meta-analysis. The results revealed
that the use of NMBAs in moderate-to-severe ARDS could significantly decrease the mortality truncated to day
28 (RR 0.74, 95% CI 0.56 to 0.98, P = 0.03) and day 90 (RR 0.77, 95% CI 0.60 to 0.99, P = 0.04). NMBA use could
significantly decrease the incidence of barotrauma (RR 0.56, 95% CI 0.36 to 0.87, P = 0.009). No significant difference
was observed in ICU-free days or ventilation-free days between the NMBA and control groups.

Conclusion: The use of NMBAs could significantly decrease mortality in moderate-to-severe ARDS patients and
decrease the incidence of barotrauma during mechanical ventilation. However, more large-scale randomized trials
are needed to further validate the effect of NMBA use in ARDS.
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Background
Acute respiratory distress syndrome (ARDS) is defined
as diffuse alveolar epithelial damage due to a dysregu-
lated inflammatory response of intrapulmonary origin or
to a systemic inflammatory process, resulting in refrac-
tory hypoxemia, reduced pulmonary compliance, and
bilateral pulmonary infiltrates on chest imaging [1, 2].
ARDS represents approximately one-tenth of all inten-
sive care unit (ICU) admittances, and its mortality sur-
passes 40% once it deteriorates to severe ARDS, which is
a great challenge to ICU intensivists and a heavy burden
to public health [3].
Over the past decades, only a few approaches have

been proven to be effective in reducing mortality in

ARDS patients, including a lung-protective ventilation
strategy [4–6] and prone positioning [7, 8]. Neuromus-
cular blocking agents (NMBAs) have been the only
pharmaceutical approach that is supposed to benefit
patients with ARDS.
In ARDS, an excessive respiratory drive could lead to

increased tidal volume, voluntary exhalation, and
patient-ventilation asynchrony, which potentially worsen
ventilator-induced lung injury (VILI) and increase mor-
tality [9]. NMBAs prevent the patient-initiated gener-
ation of high volumes and active exhalation, facilitate
patient-ventilator synchrony, provide protection from
VILI, and ultimately reduce mortality in patients with
ARDS [10–12]. In addition, NMBAs are also reported to
directly alleviate pulmonary and systemic inflammatory
progression [13]. In the updated guideline for ARDS
management, NMBAs are recommended for a subgroup
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of moderate-to-severe ARDS patients for early use in 48
to 72 h [14]. However, NMBA use and inappropriate
sedation are also associated with ICU-acquired weak-
ness, delayed ventilation weaning, and prolonged hos-
pital stay [15–18].
Previous meta-analyses have demonstrated a signifi-

cant decrease in mortality in ARDS patients by NMBA
use [19, 20]. However, in a recently published large-scale
randomized trial in patients with moderate-to-severe
ARDS, the early use of NMBAs in the first 48 h unex-
pectedly revealed no significant difference in mortality
compared with usual care [21], which made NMBA use
in ARDS further undetermined. Thus, it requires us for
a quantitative analysis of the pooled results of up-to-date
trials of NMBA use to validate the current effects of
NMBAs in patients with moderate-to-severe ARDS.
Furthermore, as the results between trials were incon-
sistent, we thought it might be necessary to investigate
the reasons leading to the discrepancies in results for fu-
ture study design and selection of patients that would
potentially benefit from NMBA use in clinical practice.

Methods
This work was performed according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) statement [22, 23] (Additional File 1) and was
registered in the International Prospective Register of
Systematic Reviews (PROSPERO, CRD42019138416).

Information sources
Two researchers independently searched several data-
bases, including PubMed, EMBASE, Cochrane Central
Register, and Web of Science up to June 1, 2019, and an
updated search was conducted on November 14, 2019.
When potentially relevant reviews or meta-analyses were
found, a backward snowballing search was performed to
obtain further studies.

Search strategy
The following key words were used in the search:
“neuromuscular blocking agents,” “neuromuscular
blockers,” “acute respiratory distress syndrome,” “adult
respiratory distress syndrome,” and “shock lung.” The
full search strategy is included in Additional File 2.

Eligibility criteria
Trials that met the following criteria were included in
this meta-analysis: (1) study population of moderate-to-
severe ARDS patients diagnosed according to the Berlin
criteria [24] or American-European Consensus Confer-
ence (AECC) criteria for ARDS [25]; (2) early use of an
NMBA of any category, with no restrictions on the dur-
ation or dosage of the NMBA; (3) data on mortality were
reported; and (4) randomized control trial (RCT) study

design. The exclusion criteria were as follows: (1) dupli-
cates or overlapping populations, (2) in vitro or animal
experiments, (3) pediatric or pregnant subjects, (4) no
ARDS patients, and (5) lack of data on mortality.

Study selection
Titles and abstracts were first reviewed separately by
two researchers. When potentially relevant studies were
found, the complete manuscripts were retrieved for fur-
ther inspection. All the articles were reviewed, assessed,
and selected by the two researchers independently with
any disputes solved by consensus or consultation with a
third researcher.

Data items
The following information was extracted from the stud-
ies: (1) subject characteristics (including age, sex, onset
and origin of ARDS), (2) interventions (including NMBA
regimen, sedation strategy, and mechanical ventilation
mode), and (3) outcome measurements. The primary
outcome was mortality, and the secondary outcomes
were clinical outcomes, including partial pressure of
arterial oxygen and carbon dioxide (PaO2 and PaCO2),
arterial pH, FiO2, PaO2 to FiO2 ratio (PaO2/FiO2), tidal
volume, minute ventilation, peak inspiratory pressure
(PIP), plateau pressure, respiratory rate, positive end-
expiratory pressure (PEEP), driving pressure (DP),
incidence of barotrauma, ICU-free days, and ventilation-
free days.
The continuous variables were converted and are

described as the mean with standard deviation (SD) if
the median with interquartile range (IQR) or 95%
confidence interval (CI) were reported. If the clinical
variables were reported at baseline and after treatment,
the alterations in the variables from baseline to post-
treatment were calculated using the methods described
in Additional File 3. DP was calculated by subtracting
PEEP from plateau pressure, which was calculated
whenever possible, using the methods provided in
Additional File 3.

Risk of bias assessment
Internal validity and risk of bias were assessed by two re-
searchers separately following the Cochrane Collabora-
tion’s protocols [26]. The risk of bias of the articles was
evaluated as “yes”, “no,” or “unclear” after scrutinizing
the procedures performed in the articles.

Summary measures
Categorical variables are presented as proportions and
were compared by risk ratios (RRs) with 95% CIs.
Continuous variables are described as the mean ± SD
and were compared by the mean difference (MD) or
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standard mean difference (SMD) according to the units
of the variables.

Statistical analysis
The data extracted from the articles were analyzed by Re-
view Manager 5.3 (The Nordic Cochrane Centre,
Cochrane Collaboration, Copenhagen). Mantel-Haenszel
statistics were applied for categorical variable measure-
ments, and an inverse variance model was used for con-
tinuous variables. A random-effects model was deployed
for a better accommodation of heterogeneity. Cochrane I2

statistics were used to assess the statistical heterogeneity
between studies, with I2 > 50% as high heterogeneity. Each
study was sequentially removed, and the remaining dataset
was reanalyzed for statistical significance or to detect fa-
voring directions to evaluate the robustness of the results.
Univariate meta-regression was used to explore the poten-
tial sources of heterogeneity. Post hoc sub-group analysis
was conducted to analyze the effects of NMBA on sub-
population of patients. Funnel plots were used to evaluate
the publication bias of the studies by visual inspection.
Trial sequential analysis (TSA) was deployed to calcu-

late the optimal information size [27] and was analyzed
by Copenhagen Trial Unit’s Trial Sequential Analysis
software (Copenhagen Trial Unit, Copenhagen). We esti-
mated 36% mortality in the control arm and a reduction
of mortality to 27% in the NMBA arm, adopted from the
ACURASYS study [10], with 80% power and a two-sided
alpha of 0.05. We inspected the Lan-DeMets sequential
monitoring boundary and the current information size
to determine whether the optimal information size was
reached. A two-tailed P value less than 0.05 was consid-
ered statistically significant.

Results
Study selection and characteristics
The comprehensive search yielded a total of 871 articles,
and 7 randomized trials enrolling 1598 patients were
finally included in this meta-analysis [10, 21, 28–32]
(Fig. 1). Among the enrolled studies, three studies adopted
the AECC criteria [10, 28, 29] and the remaining four used
Berlin criteria [21, 30–32] for ARDS diagnosis. All studies
used deep sedations with a Ramsay score of 6 in the con-
trol group, except for the ROSE study [21] and study by
Rao et al. [32], in which light sedation with a Richmond
Agitation-Sedation Scale (RASS) score of 0 to − 1 and a
Ramsay score of 2 to 4 were used in the control arm re-
spectively (Table 1). The detailed risk bias assessment of
the trials is provided in Additional File 4.

Synthesis of results
Primary outcomes
The data on mortality extracted from the trials were
pooled and analyzed, and the results revealed a

significant decrease in mortality in the NMBA group
compared with the control group, with an RR of 0.74
(95% CI 0.56 to 0.98, P = 0.03), when the observation
endpoint was truncated to day 28. The decrease in mor-
tality in the NMBA group could still be observed, with
an RR of 0.77 (95% CI 0.60 to 0.99, P = 0.04), when trun-
cated to day 90 (Fig. 2).

Secondary outcomes
We compared the clinical outcomes between the NMBA
and control groups and found that the use of NMBAs
significantly increased the PaO2/FiO2 ratio change
(mmHg, MD 8.97, 95% CI 0.66 to 17.28, P = 0.03); re-
duced FiO2 by approximately 4% (MD − 0.04, 95% CI −
0.09 to 0.00, P = 0.03); decreased the minute ventilation
change (L/min, MD -0.51, 95% CI − 0.76 to − 0.07, P =
0.02); and decreased the PEEP level change (cmH2O,
MD − 0.52, 95% CI − 1.01 to − 0.03, P = 0.04). The use of
NMBAs also decreased the incidence of barotrauma in
mechanical ventilation (RR 0.56, 95% CI 0.36 to 0.87,
P = 0.009). We found a significant increase in DP in pa-
tients using NMBAs (cmH2O, MD 0.91, 95% CI 0.37 to
1.45, P = 0.001).
No significant differences could be observed in the

other respiratory physiological parameters, ICU-free
days (P = 0.74) or ventilation-free days (P = 0.19 when
truncated to day 28, P = 0.09 when truncated to day 90)

Fig. 1 Flow chart of the search process and study selection
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between the NMBA and control groups. The full list of
comparisons of the clinical outcomes was provided in
Additional File 5.

Risk of bias and sensitivity analysis
We used both fixed-effects and random-effects
models to retest the results, and we found no
changes in favoring directions in either model. How-
ever, when each trial was sequentially omitted from
the meta-analysis to analyze the individual effects of
the trial on the overall results, the results showed
that the significance was lost when some studies
were omitted from the pooled analysis (Add-
itional File 6). Visual inspection indicated asymmetry
in the funnel plot, which indicated potential publica-
tion bias (Additional File 7).

Meta-regression and subgroup analysis
We conducted a univariate meta-regression and found
that the publishing year (P = 0.037), sample size (P =
0.036), and sedation strategy (deep vs. light sedation,
P = 0.049) might associate with the heterogeneity be-
tween studies. Furthermore, the estimated improvement
of PaO2 to FiO2 ratio 24 h after enrollment yielded a P
value of 0.062. The full list of factors involved in the
meta-regression was provided in Additional File 8. A
post hoc sub-group analysis was deployed and found
that patients diagnosed according to AECC criteria (RR
0.66, 95% CI 0.50 to 0.87, P = 0.003), patients with PaO2
to FiO2 ratio less than 150 mmHg at enrollment (RR
0.72, 95% CI 0.53 to 0.97, P = 0.03), and patients with
deep sedation strategy (RR 0.66, 95% CI 0.51 to 0.84,
P = 0.001) were likely to benefit from NMBA use (see
Additional File 9).

Table 1 Baseline characteristics of the included trials

Study Patients
no.
(sites)

Target patients NMBA group Control
group

Ventilation strategy Sedation target

Gainnier
et al. [28]

56 (4) AECC criteria for ARDS
with PaO2/FiO2 ratio
< 150 at a PEEP ≥ 5 cm
H2O within 36 h

One bolus of 50 mg of
cisatracurium infusion,
followed by a continuous
infusion at an initial rate of
5 μg/kg per min for 48 h

An infusion
of saline at a
rate of 4
mL/h

Assist-control mode for at least
48 h. Tidal volume 6–8 mL/kg of
ideal body weight

Midazolam and
sufentanil to obtain
a Ramsay score
of 6

Forel
et al. [29]

36 (3) AECC criteria for ARDS
with PaO2/FiO2 ratio
< 200mmHg at a PEEP
≥ 5 cm H2O within 48 h
of onset

One bolus of 50 mg of
cisatracurium infusion,
followed by a continuous
infusion at an initial rate of
5 μg/kg per min for 48 h

An infusion
of saline at a
rate of 4
mL/h

Assist/control-volume with a tidal
volume of 4–8 mL/kg predicted
body weight and a plateau
pressure of ≤ 30 cm H2O

Midazolam
(3–30 mg/h) and
sufentanil
(10–150 μg/h) to
obtain a Ramsay
score of 6

Papazian
et al. [10]

339
(12)

AECC criteria for ARDS
with PaO2/FiO2 ratio
< 150mmHg at a PEEP
≥ 5 cm H2O within 48 h

One bolus infusion of 15 mg of
cisatracurium, followed by a
continuous infusion of 37.5 mg
per hour for 48 h

An infusion
of saline at
the same
rate as
NMBA
group

Volume assist-control mode, with
a tidal volume of 6 to 8 mL per
kilogram of predicted body
weight

Obtain a Ramsay
score of 6

Lyu et al.
[30]

96 (1) Moderate to severe
ARDS with a PaO2/FiO2
less than 150 with PEEP
at least 5 within the
first 48 h

One bolus infusion of
0.1 mg/kg vecuronium,
followed by a continuous
infusion of 0.05 mg/kg per
hour for 24 to 48 h

Usual care Volume control mode, with a
tidal volume of 4 to 8 mL per
kilogram of predicted body
weight

Sedation of
midazolam and
sufentanil

Rao et al.
[32]

41 (1) Berlin criteria for
moderate-to-severe
ARDS

Continuous infusion of
1 μg/kg per min of
vecuronium

Usual care Protective ventilation strategy,
with a tidal volume of 6 mL per
kilogram of ideal predicted body
weight, with a plateau pressure
≤ 30 cm H2O

Midazolam and
sufentanil or
midazolam and
fentanyl with a
Ramsay score of 2
to 4

Guervilly
et al. [31]

24 (2) Moderate to severe
ARDS with a PaO2/FiO2
less than 150 with PEEP
at least 5 within the first
48 h

Cisatracurium besylate was
given using a 3-mL rapid intra
venous infusion of 15 mg
followed by a continuous
infusion of 37.5 mg/h

Usual care Volume-assist control mode with
a tidal volume of 6 mL/kg/IPBW
(ideal predicted body weight)

Midazolam and
sufentanil to
achieve a Ramsay
score of 6

Moss
et al. [21]

1006
(48)

present for less than 48
h: PaO2:FiO2 of less
than 150mmHg with a
PEEP of 8 cm or more of
water

An intravenous bolus of 15 mg
of cisatracurium, followed by a
continuous infusion of 37.5 mg
per hour for 48 h

An infusion
of saline at
the same
rate as
NMBA
group

Protective ventilation strategy,
with a tidal volume of 6 mL per
kilogram of ideal predicted body
weight, with a PEEP ≥ 8 cmH2O

A RASS score of 0
or − 1 in the
control group
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Trial sequential analysis
Trial sequential analysis was performed in the study, and
the results indicated that the current information size
did not cross the Lan-DeMets sequential monitoring
boundary constructed by the optimal information size,
indicating insufficient sample size in investigating the
mortality truncated to day 28. An optimal sample size of
3454 patients was estimated, which was supposed to
reach the plausible endpoint (Fig. 3).

Discussion
In the present meta-analysis, we pooled the results from
7 trials enrolling 1598 patients to validate the use of
NMBAs in patients with moderate-to-severe ARDS and
found that the early use of NMBAs in the first 48 h
could significantly reduce mortality truncated to day 28
(RR 0.74, 95% CI 0.56 to 0.98, P = 0.03) and to day 90

(RR 0.77, 95% CI 0.60 to 0.99, P = 0.04). The use of
NMBAs was associated with improved respiratory
parameters, including increased PaO2/FiO2 ratio and
reduced FiO2, minute ventilation, PEEP level, and
incidence of barotrauma during mechanical ventilation
(RR 0.56, 95% CI 0.36 to 0.87, P = 0.009). We also found
an increased measurement of DP after NMBA use
(cmH2O, MD 0.91, 95% CI 0.37 to 1.45, P = 0.001).
Our results were consistent with previous findings that

the use of NMBAs could significantly reduce mortality
in patients with moderate-to-severe ARDS [19, 20].
NMBA use was associated with facilitated patient-
ventilator synchrony, which potentially reduces the inci-
dence of VILI and barotrauma and ultimately improves
outcomes in ARDS patients.
We found a significant increase in DP in the NMBA

group compared with the control group (cmH2O, MD

Fig. 2 The effect of NMBAs on mortality truncated to day 28 (a) and day 90 (b) in moderate-to-severe ARDS patients. a The effect of NMBA on
mortality truncated to day 28 in moderate-to-severe ARDS patients. b The effect of NMBA on mortality truncated to day 90 in moderate-to-severe
ARDS patients
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0.91, 95% CI 0.36 to 1.45, P = 0.001). We speculated that
this finding may be due to the existence of spontaneous
breath in the control group, which led to the inaccurate
measurement of DP.
However, sensitivity analysis suggested that our result

was not robust and Cochrane I2 statistics indicated cer-
tain heterogeneity between studies (I2 = 45%).
Sedation strategy might be one of the sources of

heterogeneity. Sub-group analysis suggested that ARDS
patients underwent deep sedation was more likely to
benefit from NMBA use (RR 0.66, 95% CI 0.51 to 0.84,
P = 0.001). We thought this could be partially explained
by the effects of reverse triggering, defined as a dia-
phragm contraction triggered by mechanical ventilation,
which could lead to breath stacking, VILI, and baro-
trauma [33]. Reverse triggering was paradoxically seen
in ARDS patients with deep sedation and could be re-
solved by NMBA use [34]. It was possible that in the
trials included in the present meta-analysis, the pa-
tients in the control group with deep sedation would
have reverse triggering and thus worse outcomes, and
the use of NMBAs could resolve the deleterious effect
of reverse triggering, while in studies in which light
sedation was used in the control group, reverse
triggering was mitigated, which might have masked
the effects of NMBA use [35, 36].
We saw a tendency of statistical significance by meta-

regression that the resolve of PaO2/FiO2 ratio on the
second day after enrollment was likely to contribute to

the source of heterogeneity (P = 0.062). We speculated
that the ARDS patients who had a greater improvement
in PaO2/FiO2 ratio were probably not as severe or at
least not as refractory reversible, which suggested that
the use of NMBAs might be beneficial in patients with
extremely refractory and severe ARDS.
We also noticed a significant effect of NMBA use in a

sub-group of ARDS patients with a PaO2/FiO2 ratio less
than or equal to 150 mmHg at enrollment (RR 0.72, 95%
CI 0.53 to 0.97, P = 0.03). However, as the disparity of
the number of patients in each sub-group was great, this
result should be interpreted with much caution. Further-
more, meta-regression suggested that the year in which
the study was published also introduced heterogeneity
(P = 0.037) and we found NMBA use was effective in the
ACEE definition for ARDS (RR 0.66, 95% CI 0.50 to
0.87, P = 0.003). However, we did not regard the defin-
ition for ARDS as a confounding factor and we would
rather believe this could probably due to the evolvement
of ARDS management, which seemed to make NMBA
use less important. NMBA was not a “magic bullet” and
should be a part of a lung-protective strategy.
The current results may not be conclusive. We then

conducted TSA; the results indicated that more patients
were needed to validate the use of NMBAs in ARDS,
with an optimal sample size of 3454 patients.
Our study had several limitations. Some trials included

in the meta-analysis were of limited sample size, which
was likely to bring bias to the results, and only two

Fig. 3 Trial sequential analysis revealing the optimal sample size for detecting the plausible effect of NMBA use
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large-scale randomized trials were included in our meta-
analysis. More trials are needed to further validate the
effects of NMBAs in ARDS. We used a mathematical
imputation method to calculate the variables with the
after-before alterations of certain parameters, which
would potentially bring bias to the results and the inter-
pretations. Some of the subgroup analyses included only
two studies, which could potentially bring bias to the re-
sults and should be interpreted cautiously.

Conclusion
Early use of NMBAs could reduce mortality and de-
crease the incidence of barotrauma during mechanical
ventilation in patients with moderate-to-severe ARDS.
However, more RCTs are needed to further validate the
effects of NMBAs in ARDS.
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