EPURATION EXTRARÉNALE EN RÉANIMATION : MODALITÉS ET PARTICULARITÉ EN TOXICOLOGIE

AYMEN M'RAD /NOZHA BRAHMI Collège de Réanimation Médicale

> Service de Réanimation Médicale- CAMU 28 Mars 2014

INTRODUCTION

- ▶ Insuffisance rénale aiguë: 5 à 20 %
- **▶** EER: 50 à 70 %

- Quand?
- Quelle méthode?
- Quels réglages?
- Comment (Quelle procédure)?

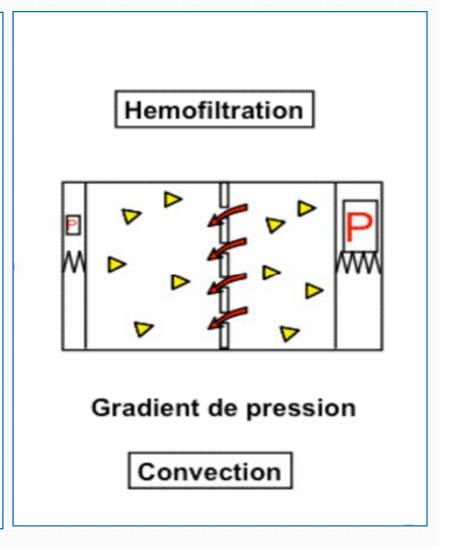
Quand? Indications

Indications Classiques

- Oligurie ou anurie
- Hyperkaliémie / Acidose sévère
- Urémie (urée > 30mM) +/- signes cliniques

Timing: le plus précocement possible pour prévenir les complications

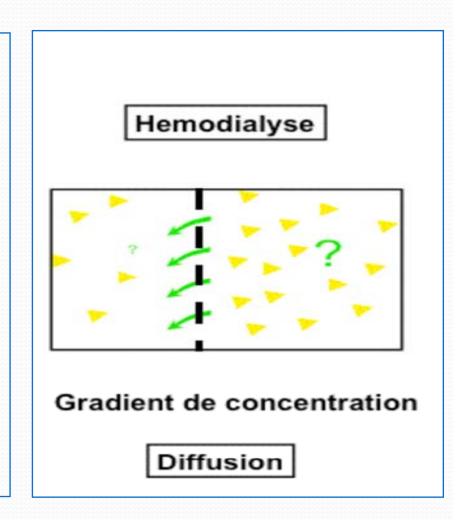
- Hyperthermie
- Certaines Intoxications


MÉCANISMES PHYSIQUES DE TRANSPORT DES MOLÉCULES

La convection

UF .

Transfert actif selon un gradient de pression d'eau plasmatique accompagnée des molécules de poids moléculaire bas (ions) et moyen (cytokines, protéines) à travers une membrane.


Le liquide obtenu=ultrafiltrat

MÉCANISMES PHYSIQUES DE TRANSPORT DES MOLÉCULES

La diffusion:

Transfert passif selon un gradient de concentration des molécules de bas poids moléculaire (urée, créatinine, ions) qui aboutit à l'équilibre des concentrations entre le milieu le plus concentré et le milieu le moins concentré.

Méthodes d'épuration intermittentes

- ➤ Hémodialyse conventionnelle +++ : Chef de fil
- > Epuration des molécules: diffusion
- Elimination de la charge hydrique: convection (ultrafiltrat)

Méthodes d'épuration continues

1- Hémofiltration: (CVVH : Continuous VenoVenous Hemofiltration)

- Débit d'ultrafiltration = débit d'eau plasmatique qui traverse la membrane par unité de temps. En pratique courante = 35 ml/kg/h
- « Haut volume»: débit d'ultrafiltration > 50 ml/kg/h.
- ➤ Intérêt théorique au cours du choc septique: élimination rapide des cytokines et des protéines de l'inflammation.

Méthodes d'épuration continues

- **2- Hémodialyse:** (CVVHD : Continuous VenoVenous Hemodialysis)
- > Moins efficace que l'HDI pour le traitement en urgence des désordres électrolytiques (hyperkaliémie, hypercalcémie).
- Moins efficace que l'HF pour l'épuration des moyennes molécules.

Méthodes d'épuration continues

- **3- Hémodiafiltration:** (CCVHDF: Continuous Veno Venous Hemodiafiltration)
- > Technique d'EER associant l'hémodialyse et l'hémofiltration.
- > Augmenter l'efficacité de l'EER: Anciennes machines ne permettaient pas d'obtenir des volumes d'échanges suffisants en HF seule.
- ➤ Nouvelles machines: palier à cette insuffisance.

Quelle méthode? Avantages et limites

Avantages	Limites
Méthodes intermittentes Clairance élevée pour les petites molécules Mobilité du patient Plusieurs utilisations /j Faibles besoins en anticoagulants Faible risque hémorragique	Méthodes intermittentes Tolérance hémodynamique Variations d'osmolalité rapides Gestion volémique sur de courtes périodes Dose de dialyse difficilement prévisible Sécurité microbiologique Formation des équipes
Méthodes continues Bonne tolérance hémodynamique Contrôle métabolique continu Faibles variations osmotiques Meilleure gestion de la balance des fluides Élimination des molécules de taille moyenne Liquides stériles et apyrogènes	Méthodes continues Anticoagulation et risque hémorragique Faible mobilité Interruptions imprévues fréquentes (coagulation) Une machine en continu par patient Stockage des liquides Charge en soins infirmiers

Absence de différence significative en termes de mortalité et de récupération de la fonction rénale entre méthodes continues et intermittentes.

Situations cliniques favorables aux méthodes continues

- IRA avec instabilité hémodynamique sévère
- Risque important d'œdème cérébral
- Surcharge volémique importante

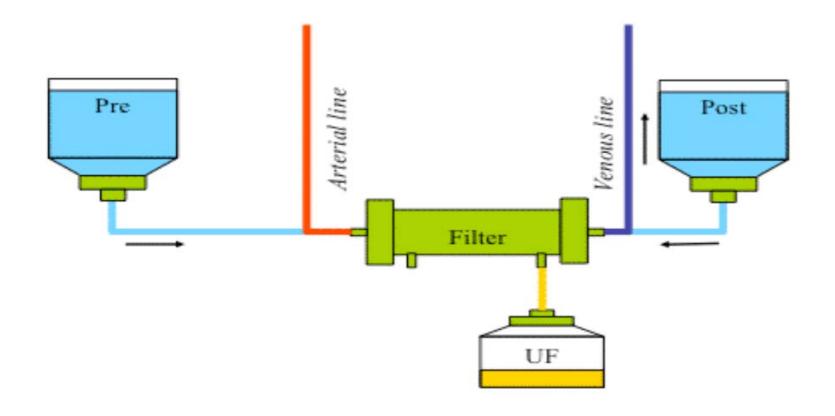
Situations cliniques favorables aux méthodes intermittentes

- -Désordres hydroéléctrolytiques mettant en jeu le pronostic vital (hyperkaliémies et les acidoses métaboliques sévères)
- Contre-indications relatives ou absolues à l'anticoagulation
- Difficultés techniques rencontrées avec les méthodes continues: les coagulations itératives de la membrane malgré une anticoagulation.

- 1-Hémodialyse intermittente conventionnelle Optimisation hémodynamique :
- Préserver le volume plasmatique
 - > Branchement isovolémique
 - ➤ Débit sang: Commencer à 150- 200ml/mn puis augmenter progressivement toutes les 1 à 5 mn jusqu'à 500-700ml/mn
 - Conductivité: Na+ 140 à 150

- 1-Hémodialyse intermittente conventionnelle Optimisation hémodynamique :
- Préserver la contractilité myocardique
 - ➤ Dialysat au bicarbonate vs citrate
 - Dialysat riche en calcium 1,75 mmol/l vs 1,25 mmol/l
- Préserver la réactivité vasculaire
 - **➤ Température:** 2°c < la température corporelle
 - Membrane biocompatible

1-Hémodialyse intermittente conventionnelle


En pratique

- Durée: 4-6 h.
- Débit sang: Commencer à 150- 200ml/mn puis augmenter progressivement toutes les 1 à 5 mn jusqu'à 500-700ml/mn
- Débit de dialysat: 500-1000mL/min.
- Conductivité: Na+ 140 à 150
- **Température:** 2°c < la température corporelle.
- UF: sera réglée en fonction de la volémie.
- Au début régler Uf à 300 ml au dessous de l'UF nette.

2-Hémofiltation

- La concentration de soluté dans l'UF = plasma
- L'efficacité de la méthode dépend du débit d'UF +++
- -UF = $1000 \text{ml/h} \rightarrow \text{Cl}=17 \text{ ml/min}$
 - UF = 2000ml/h \rightarrow Cl=34 ml/min ect...
- Volume de restitution: Dépend de la perte de poids souhaité

PREDILUTION-POSTDILUTION

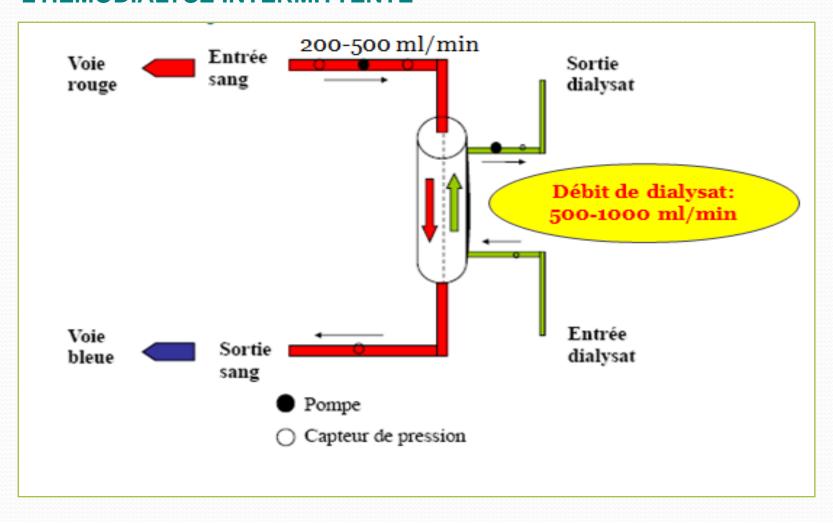
En HF ou en HDF:

Le liquide peut être réinjecté avant l'hémofiltre : principe de la pré-dilution. Le liquide peut être réinjecté après l'hémofiltre : principe de la post-dilution.

PRINCIPES DE PRÉ ET POST-DILUTION:

Pré-dilution

La solution de substitution est réinjectée avant le filtre :


- Avantage : augmentation de la durée de vie du filtre par diminution du risque de thrombose
- Inconvénient : hémodilution, baisse de l'efficacité de l'épuration

Post-dilution

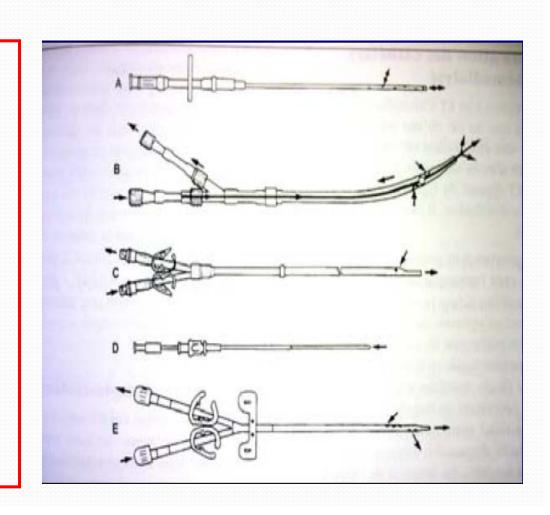
La solution de substitution est réinjectée après le filtre :

- Avantage : augmentation de l'efficacité
- Inconvénient : hémoconcentration, baisse de la durée du filtre

L'HÉMODIALYSE INTERMITTENTE

Choix du cathéter

Un monolumière:


Flux sanguin alternatif

Deux KT monolumières: ++

- HFVVC ++++
- Deux veines différentes ou la même veine avec deux orifices éloignés d'au moins 2,5 cm

KT double lumière:

- Un seul accès veineux
- Performance! Diamètre:
 - ➤ EER continue 11 à 12 Fr
 - ➤ EER intermittente 13,5 à 14 Fr

Choix de la voie d'abord Vasculaire

- > Kt fem >> 20 cm (24cm)
- > KT jug int D :16 cm Kt Jug int G :20 cm
- ➤ Proscrire ss clav : Risque de sténose veineuse ≈50% en cas d'IRCt

Anticoagulation

HNF: pratique, peu cher, antagonisable et pas transférée par diffusion

HBPM: un seul bolus mais demi vie longue, élimination rénale, surveillance complexe

<u>Citrate</u>: chélation Ca²⁺, moins d'hémorragies, moins de coagulation des circuits, moins de thrombopénie MAIS attention à la calcémie

Anticoagulation

Risque Hémorragique faible :

HNF 5000 UI IVD

Branchement puis 500 UI/h.

- Risque hémorragique modéré : HNF 200 UI/h et rinçage sérum physiologique .
- Hémorragie active : pas d'héparine et rinçage seul.

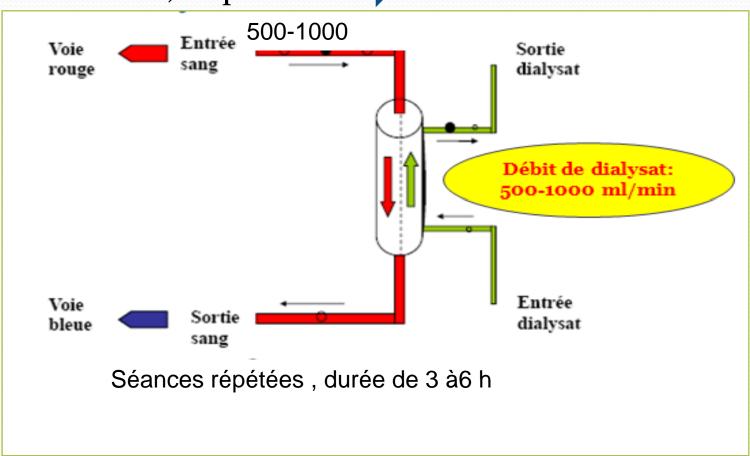
Quels toxiques?

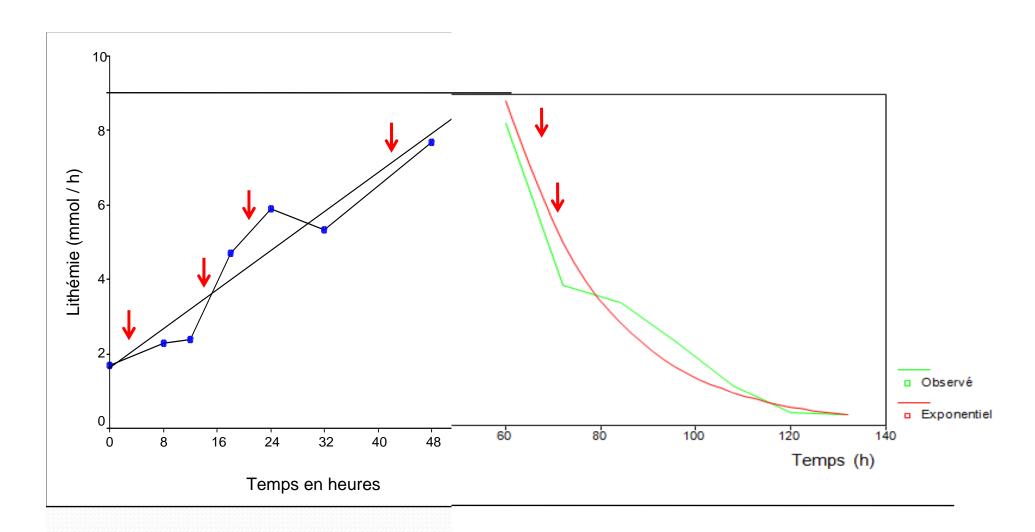
Toxique dialysable: caractère pharmacocinétique

- Faible volume de distribution < 1l/kg
- Faible poids moléculaire
- Faible liaison aux protéines plasmatiques (< 60 %).
- Clairance endogène < 4 ml/Kg/min.
- Clairance d'élimination obtenue par la technique au moins égale ou supérieure à la clairance spontanée.

Quels toxiques?

Toxique dialysable: caractère pharmacodynamique


Raccourcissement de la durée d'évolution de l'intoxication ou l'amélioration de son pronostic


Quels toxiques?

- Alcools : Méthanol, Ethyléne glycol+++
- Litium
- Acide valproique
- Biguanides
- Acide salicylique (en pédiatrie +++)

Quelle méthode?

• Diffusion ; Rapide — HDI +++

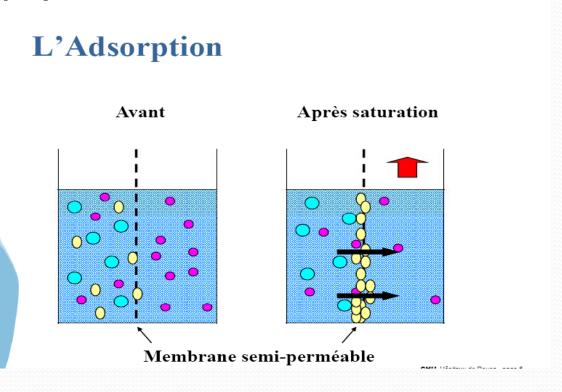


Fig 1. Cinétique de la lithémie au cours des intoxications volontaires et massives. Une première portion ascendante de la courbe entre T0 et T48 et une deuxième portion descendante à partir de t 48 h correspondant à l'élimination et répondant à une équation exponentielle.

Brahmi N et al. J Clin Psychopharmacology (in press)

Quelle méthode?

- Adsorption sur colonne de charbon activé
- Ex: Théophylline

CONCLUSIONS

- L'HDI et l'IFC semblent à ce jour deux technique comparable en terme de tolérance et d'efficacité.
- L'équipement et l'apprentissage plus lourd pour les techniques intermittentes.
- Charge de travail en soins infirmiers et coup de consommable plus importants pour les techniques continues.
- Le choix de la méthode dépend du matériel dont on dispose et de l'expérience de chacun.