Management of severe poisonings with cardiotoxicants

Bruno Mégarbane, MD, PhD

Medical and Toxicological Critical Care Department Lariboisière Hospital, Paris-Diderot University Paris - France bruno.megarbane@lrb.aphp.fr

Poisonings with cardiotoxicants

- In the USA: AAPCC 2008
 Cardiovascular agents: 10th cause of exposures (3.7%) but 4th cause of death (fatality rate: 0.27%)
- As usual no European data

	January 1998 to October 2 3,922 patients	
	Ν	Mortality rate
Poisoned patients	1,554	60 (4 %)
Cardiac complications (severe arrhythmias or failure)	164 (11 %)	37 (22 %)

Lariboisière Hospital ICU, Paris, France

Cardiotoxicants

A larger entity than cardiovascular drugs

Cardiovascular pharmaceuticals

- Sodium-channel blockers (Class I)
- Beta-blockers (class II)
- Potassium channel blockers (sotalol) (class III)
- Calcium-channel antagonists (class IV)
- Cardioglycosides (class V)
- Non-cardiovascular pharmaceuticals: antipsychotics, antidepressants, antihistamines, ...
- Drugs: cocaine, amphetamines, ...
- Rural toxicants: organophosphates, pesticides, ...
- Industrial toxicants: alumine phosphide, ...
- Household toxicants: trichloroethylene, ...
- Plants: digitalis, aconit, colchicine, yew, Taxus baccata...
- Over-the-counter: « Best life » (sibutramine)

Conso F. Press Med 1980

The prognostic value of plasma cardiotoxiant concentrations in acute poisonings

Verapamil poisonings

Specific drug-dependent considerations to assess the risk and features of the intoxicated heart

Beta-blocker poisonings (1) Clinical features

Other signs:

11

- Hypotension, collapse
- Bronchospasm
- Respiratory depression
- Drowsiness, seizures, coma
- Hypoglycemia, hyperkaliemia

Rhythm	Incidence
Bradycardia	15
Asystole	10
Electrical-mechanical dissociation	4
Ventricular fibrillation	4
Junctional rhythm	3
Idioventricular rhythm	3
Ventricular tachycardia	2
Third degree heart block	1

and in 22 Data Blocker Fatalities

Multiple dysrhythmias were reported in some patients.

Love JN. J Toxicol Clin Toxicol 1997

Beta-blocker poisonings (2) Excess mortality in case of membrane stabilizing activity

Beta Blocker	# Exposures	% Total Exposures	# Deaths	% Deaths
Propranolol*	22,334	43.9	27	71.1
Atenolol	13,587	26.7	6	15.8
Metoprolol	7,511	14.8	1	2.6
Nadolol	2,762	5.4	2	5.3
Labetalol*	1,907	3.7	0	0.0
Pindolol*	742	1.5	1	2.6
Timolol	686	1.4	0	0.0
Acebutolol*	584	1.1	3	7.9
Betaxolol	373	< 1.0	0	0.0
Bisoprolol	226	<1.0	0	0.0
Penbutolol*	72	<1.0	0	0.0
Sotalol	48	<1.0	0	0.0
Others	29	<1.0	0	0.0
Unspecified	1,295	2.5	0	0.0
Total	52,156		40	

Two cases involved mixed ingestions of propranolol and atenolol. *Nonspecific membrane activity.

Love JN. J Toxicol Clin Toxicol 1997

Beta-blocker poisonings (3) Excess morbidity in case of cardioactive coingestants (calcium channel blocker, cyclic antidepressant, neuroleptics)

	All I	Exposures	Car	res Without dioactive ngestants
Beta Blocker	Number of Exposures	Cardiovascular Morbidity	Number of Exposures	Cardiovascular Morbidity
*Propranolol	121 (43%)	19 (46%)	85 (44%)	8 (50%)
*Metoprolo1	36 (13%)	7 (17%)	23 (12%)	4 (25%)
*Labetalol	12 (4%)	3 (7%)	10 (5%)	2 (13%)
*Acebutolol	4 (1%)	1 (2%)	3 (2%)	1 (6%)
*Pindolol	1 (<1%)	0 (0%)	0 (0%)	0 (0%)
Atenolol	87 (31%)	8 (20%)	61 (32%)	1 (6%)
Nadolol	8 (3%)	2 (5%)	4 (2%)	0 (0%)
Bisoprolol	5 (2%)	0 (0%)	3 (2%)	0 (0%)
Timolol	3 (1%)	0 (0%)	3 (2%)	0 (0%)
Sotalo1	2 (<1%)	1 (2%)	0 (0%)	0 (0%)
Betaxolol	1 (<1%)	0 (0%)	1 (<1%)	0 (0%)
Total	280	41	193	16

Love JN. J Toxicol Clin Toxicol 2000

Calcium-channel antagonist poisonings (1) Toxicological consequences of pharmacological properties

2

Five different CCB classes, including dihydropyridines (nefidipine and amlodipine), phenylalkylamine (verapamil), benzothiazepine (diltiazem), diphenylpiperazine (mibefradil), and diarylaminopropylamine (bepridil).

Calcium-channel antagonist poisonings (2) Features and severity

	Verapamil (N = 68)	Diltiazem (N = 27)	Nifedipine (N= 14)	Total (N = 109)
Hypotension	79%	89%	86%	84%
Bradycardia (< 60 /min)	56%	78%	43%	60%
Severe bradycardia (< 40 /mi	n) 24%	26%	43%	60%
AV block	60%	63%	50%	60%
Complete AV block	53%	52%	21%	51%
Cardiac arrest	21%	22%	21%	21%
Death rate	25%	7%	7%	18%

Sauder P. Intoxications aiguës. Elsevier, 1999

- Polycyclic antidepressants, citalopram and venlafaxin
- Quinine and chloroquine
- Class I anti-arrhytmics (quinidine, cibenzoline, flecainide, propafenone)
- * Some β -blockers like propranolol and acebutolol
- Carbamazepine
- Propoxyphene
- Cocaine

3

Poisonings with sodium channel blockers (2) Clinical features

- Cardiovascular syndrome:
 - **ECG** : QRS enlargement, QT prolongation, AV blocks **Circulation** : Cardiogenic and vasoplegic shock
- Metabolic syndrome : Hypokaliemia, lactic acidosis
- Neurological syndrome : Convulsive coma
- Respiratory syndrome : Delayed ARDS with alveolar hemorrhage

Poisonings with sodium channel blockers (3) Value of QRS to predict arrhythmias in tricyclic antidepressant poisonings

Measurement of the terminal 40-millisecond frontal plane axis

3.4

S duration (msec)	Seizure risk		ricular thmia risk	
< 100	mild	m	nild	3
100 - 160	moderate	m	nild	
>160	elevated	el	evated	
	Boehnert MT. <i>N Engl J</i>	Т Меd 1985		avR
		Sanaei-Zad	leh H. <i>Res</i>	uscitation 2011

QR.

Poisonings with sodium channel blockers (4) Brugada syndrome

Prevalence: 15% tricyclic AD poisonings Disappears if < 1 μ mol/l Response to NaHCO₃ controversial Associated to genetic polymorphism (cocaine)

	Type 1	Type 2	Туре 3
J wave amplitude T wave ST-T configuration	≥ 2 mm Negative Coved type	≥ 2 mm Positive or biphasic Saddleback	≥ 2 mm Positive Saddleback
ST segment (terminal portion)	Gradually descending	Elevated $\geq 1 \text{ mm}$	Elevated < 1 mm

Cocaine poisoning:

Mechanisms of arrhythmia genesis:

- Sodium channel blockade
- Potassium channel blockade
- Catecholamine excess and SNC agitation
- Myocardial ischemia and infarction

J Pharm Exp Ther 1994

4 Cardioglycoside poisonings (1) Clinical features of digitalis poisoning

Na/K - ATPase blockade Circumstances: therapeutic overdose > suicide

Multiple and mostly nonspecific manifestations Fatigue, blurred vision, disturbed color perception Anorexia, nausea, vomiting, diarrhea, abdominal pain Headache, dizziness, confusion, delirium, and occasionally hallucinations Rarely intestinal none occlusive infarction

Blood pressure is usually preserved (sympathic tone), while cardiac dysfunction possible

Cardiac arrhythmias may take almost any form and are responsible for mortality

Cardioglycoside poisonings (2) Typical ECG in digitalis poisoning

Combination of SVT + AV block is highly suggestive of digitalis toxicity

Harmless	Sinus-bradycardia, ST-scoop, AVB I
Less harmless	AVB II, bigeminus, PAT
Dangerous	AVB III, Polytope ventricular extrasystolia, VT
Near death	VF, asystolia

	Cardioglycoside poisonings (3) ECG features					
	AF	SAB	AVB 1	AVB 2	AVB 3	VT/VF
Taboulet, % N=141	17	26.8	12.2	9.8	14.6	9.7
Lapostolle, % N=141	25.7	24.2	10.6	14.3	19.7	9.1

AF: Atrial fibrillation with ventricular response <50/min BSA III : Sinoatrial block of third degree AVB I / II / III : Atrioventricular block of first, second or third degree

> Taboulet P. Clin Toxicol 1993 Lapostolle F. Crit Care Med 2009

Main prognostic factors

Dally S. Press Med 1981

Drugs associated with QT-prolongation and torsade-de-pointes

Drug-drug interactions (P-450 inhibitors) > overdoses +/- genetic vulnerability (hereditary long QT) or cardiac disease

- -Antiarrhythmics (class Ia, Ic, III, V)
- Sympathomimetics
- Methadone
- Antipsychotics & Antidepressants (phenothiazines, atypical antipsychotics tricyclics, tetracyclics, SSRIs)
- Antihistamines

(terfenadine, astemizole, loratadine)

- Gastrointestinal agents

(cisapride, domperidone, dolasetron)

- Antiinfectives & antifungals (macrolides, fluoroquinolones, azoles)

Estimation of TdP risk using a QT nomogram

The QT nomogram is a clinically relevant risk assessment tool that accurately predicts arrhythmogenic risk for drug-induced QT prolongation

Chan A. QJM 2007

Management of drug-induced cardiac failure and arrhythmias

Strategy of management of toxic cardiovascular failure

Diagnosis of shock

Determination of the mechanism of shock

Definition of the optimal treatment

Diagnosis of the refractoriness of shock

Assessment of the mechanism of the toxic shock

Consequences of convulsion-induced hypoxemia and acidosis on cardiac toxicity

	Before	Just after	3h later
Arterial pH	7.39	7.19	7.46
Lactate concentration (mmol/l)	1.7	6.5	3.1
PaO ₂ (mmHg)	95	55	90
Systolic BP (mmHg)	120	80	120
QRS width (s)	0.08	0.13	0.08

Taboulet P. *Réan Urg* 1993

Conventional supportive treatments in ICU

Intubation and mechanical ventilation :

- Severe arrhythmias and associated collapse
- Coma, convulsions, respiratory failure
- Treatment of collapse/shock
 - Fluids + adequate catecholamines

Treatment of torsade-de-pointes

- Defibrillation, MgSO₄, titrated isoproterenol, cardiac pacing
- Correction of electrolyte imbalance (K⁺, Mg²⁺)

* Treatment of monomorphic ventricular tachycardia

Defibrillation, MgSO₄, lidocaine infusion

* Cardiac pacing

High degree AV block with preserved inotropism

Chloroquine poisoning: prognosis assessment

	Supposed ingested dose		Systolic BP	QRS duration
Severe	<u>></u> 4 g	or	< 100 mmHg or	> 0.10 s
Moderate	2 - 4 g	and	<u>></u> 100 mmHg and	<u><</u> 0.10 s
Mild	< 2 g	and	<u>></u> 100 mmHg and	<u><</u> 0.10 s
Severe naisanina			Clemessy JL, et al. Crit C	are Med 1996

 Epinephrine 0,25 μg/kg/min with increasing 0.25 μg/kg/min steps to obtain SBP ≥ 100 mmHg

Intubation and mechanical ventilation

Diazepam 2 mg/kg in 30 min followed with 2-4 mg/kg/24h

Riou B. N Engl J Med 1988

Place of GI decontamination and elimination enhancement

- Activated charcoal: within 2 h following the ingestion
- Repeated doses of charcoal: Low-sustained forms
- Dialysis: limited interest as
 - Elevated protein binding
 - Elevated distribution volume
 - Liposolubility
 - Elevated endogenous clearance

Risk reduction in escitalopram-related QT prolongtation with charcoal

Moderate reduction in the risk of abnormal QT interval with SDAC

Antidotes for beta-blocker poisonings

Specific treatments We recommend if supportive measures (adequate fluids and atropine) are ineffective, the administration of antidotes in the following order: dobutamine (or isoprenaline, especially in sotalol intoxication), glucagon, and epinephrine.

Taboulet P. Clin Toxicol 1993 glucagon Adenylyl cyclase β-blocker 7-TMD Glucagon ecepto α. -(+)-> OL. Beta receptor GDP GTP GDP β1-adrenergic receptors coupled to Gs-protein ATP CAMP -> increased cAMP

Antidotes for the calcium-channel blocker poisonings

• Calcium salts: 1 g IV bolus /15-20 min, 4 doses followed with 20-50 mg/kg/h infusion

• Glucose - insulin: 1 UI/kg IV bolus followed with 0.5-1 UI/kg/h infusion + adequate glucose

Yuan TH. *J Toxicol Clin Toicol* 1999 Boyer EW. *N Engl J Med* 2001

Metabolic basis for myocardial beneficial effect :

- Increase of insulin pancreas secretion
- Decrease of insulin resistance
- Decrease of free fatty acid uptake and switch to carbohydrates
- Increase of cytoplasmic calcium concentration
- Increase of myocardial "oxygen delivery / work" ratio

8.4% Sodium bicarbonate for poisonings with sodium channel blocker agents

The exact mechanism, optimal dosing, and mode of infusion are not well defined.

The most common approach: 1mEq/kg IV bolus if widened QRS or dysrhythmia.

Repeat boluses /3-5 min or place continuous infusion to achieve resolution of the dysrhythmia or QRS narrowing.

Serum pH should not exceed 7.55.

Goldfrank's toxicologic emergencies, McGraw-Hill, 2007

D Welcome

Vercome
 V

Post Your Cases
 Weinberg Lab Photos

Fat emulsion for local anesthetic toxicity

To treat severe anesthetics side-effects in the OR as well as membrane-stabilizing agent or calcium-channel blocker poisonings.

Dose regimen: 1.5 ml/kg IV bolus then 0.25 ml/kg/min infusion

Mechanisms:

- Lipid sink / sponge: alteration of tissue distribution
- Modulator of myocardial energy, overcoming the inhibition of fatty acid-dependent metabolism
- Activator of myocardial Ca^{2+} channel increasing Ca^{2+} current
- Other toxin-specific mechanisms?

Sirianni AJ. *Ann Emerg Med* 2008 Finn SD. *Anesthesia* 2009 Weinberg GL. *Anesthesiology* 2009

Is pacing still appropriate in digitalis poisonings?

92 acute digitalis poisoning (1983-1990) 51 treated with cardiac pacing ± Fab fragments (14 digoxin /36 digitoxin /1 mixed; no significant differences)

	Number	Mortality rate
Pacing alone	23	17 %
Fab alone	12	25 %
Pacing + Fab	16	31 %

Taboulet P. Clin Toxicol 1993

Indication & dosage regimen of Fab fragments

Life-threatening conditions

- Ventricular arrhythmia : VF or VT
- Bradycardia with HR ≤ 40 /min despite atropine infusion (1 mg)
- Hyperkalemia > 5 mmol /L
- Cardiogenic shock
- Mesenteric infarction

Poor prognosticators

- Male
- Age over 55 years
- Underlying heart disease
- Atrioventricular block
- Bradycardia with HR < 60 /min despite atropine infusion (1 mg)
- Hyperkalemia > 4.5 mmol /L

for curative treatment

Molar neutralization

Half-molar neutralization for prophylactic treatment

Curative/prophylactic strategy of Fab fragments administration (N = 141)

First-line therapy with Fab fragments in patients with digitalis poisoning was associated with a low mortality rate (7.5%) without increase in cost, vial number, and duration of ICU stay

_												
	Age (yrs) (gender)	History	Other Toxins	Overdose	Glycoside	Serum Concentration (ng/mL)	K (mmol/L)	ECG	Fab Dose (vials)	Time Before Fab (hrs)	Time Fab to Death (hrs)	Cause of Death
1	61 (M)	Cardiac failure	Verapamil	Voluntary	Digoxin	23.4	4.6	VF	12	?	<l	Cardiac failure
2	90 (F)	Cardiac failure, diabetes	None	Treatment	Digoxin	7.5	4.6	AVB I	2	NA	72	MOF
3	82 (M)	Parkinson's disease, cardiac failure	Meprobamate, TCA	Voluntary	Digitoxin	230.0	4.7	VF	12	10	60	MOF
4 5	71 (M) 82 (F)	Cancer Cardiac failure, AF, and HTA	None Betablocker	Treatment Treatment		7.3 4.6	5.7 4.7	VF AF	3 2	NA 3	36 19	MOF MOF

Death: sepsis, co-ingestion, post-cardiac arrest anoxia

Lapostolle F. Crit Care Med 2009

Non-responsiveness to conventional supportive treatments and antidotes

Difficulty to manage catecholamines - epinephrine versus dobutamine -

F, 17 years, severe propranolol poisoning Sedation + mechanical ventilation + FiO $_2$ 100%

	Epine	ephrine 1.5 mg/h	Dobutamine	15 µg/kg/min
BP	S	93	56	mmHg
	D	64	33	mmHg
	Μ	75	43	mmHg
P_{RA}		7	6	cmH_2O
P _{AP}	S	27	19	cmH_2O
	D	19	11	$cmH_2^{-}O$
	Μ	23	15	$cmH_2^{-}O$
P _{cw}		17	13	cmH_2O
Cardi	ac Index	1.4	1.8	l/min/m ²
	emic resistances	50.3	20.3	UI
		30 min		crease in BP .

Fatal poisonings with cardiotoxic agents despite optimal pharmacological management in ICU

Toxicant	N	Mortality
Chloroquine	63	27%
Antidepressants	40	28%
Beta-blockers	23	22%
Flecainide	8	50%
Cocaine	3	33%
Total	137	28%

Cause of death : Refractory ventricular fibrillaton Refractory asystole Refractory cardiogenic shock Brain anoxia ICU-acquired complications

ECLS in cardiogenic schock

The purpose of ECLS is to take over heart function until recovery can occur, minimizing myocardial work, improving organ perfusion, and maintaining the renal and biliary elimination of the toxicant.

Baud FJ. Crit Care 2007

Cannulation of femoral vessels in medical ICU

Femoral arcade

Femoral artery Femoral vein

Mégarbane B. Intensive Care Med 2007

ECLS monitoring in ICU

Monitoring of an ECLS-treated poisoned patient in ICU

- Efficient anticoagulation: heparin to obtain ACT = 2N
- Catecholamines
 for mean BP = 60-70 mmHg +
 dobutamine to facilitate LV discharge
- Adequate transfusions
- Adapted Mechanical ventilation
- Temperature control
- Canulated lower limb monitoring (NIRS)
- Echocardiography: weaning criteria
- Neurological evaluation (EEG, clinical)
- Care, nursing

Outcome of 57 poisoned patients treated with ECLS

	Total (N = 57)	Cardiac failure (N = 26)	Refractory arrest (N = 31)
Survival	16 (28%)	12 (46%)	4 (13%)
Neurological sequellae	4	3	1
Hemorrhagic accidents	9	2	7
Thombo-embolic complications	3	2	1
Lower limb ischemia	4	3	1

Multivariate analysis of the prognostic factors of death in 57 poisonings treated with ECLS

ECLS indication for refractory cardiac arrest, plasma AST level, and plasma bicarbonate concentration were the 3 independent predictive factors of death (p < 0.0001)

	Odds Ratio	95% Confidence interval
Refractory cardiac arrest	5.8	[1.6 - 21.3]
AST > 750 IU//I	9.0	[1.1 - 75.2]
Plasma bicarbonate concentration < 16.0 mmol/l	11.8	[1.4 - 97.4]

ICU management of severe poisonings with medications or illicit substances

- Cardiovascular collapse or shock is a life-threatening complication. Determination of the underlying mechanism (hypovolemia, vasodilatation, contractility disorders) is essential to guide the treatment. In severe poisonings, invasive or noninvasive hemodynamic investigations are warranted.
- When conventional treatments fail in patients with persistent circulatory arrest or refractory shock, ECLS should be considered.

Conclusions :

- Shock and arrhythmias following poisonings with cardiotoxicants (especially with digitalis, sodium-channel, and calcium channel blockers) are frequent and may lead to lifethreatening symptoms and death.
- Adequate monitoring of severity and assessment of prognostic criteria are mandatory to improve patient management.
- Treatment is mainly supportive. Despite the absence of highlevel of evidence, administration of antidotes is life-saving.
- Peripheral ECLS may represent the unique solution in patients admitted for severe poisonings with non-responding arrhythmias or cardiac arrest. Its definitive benefit should be prospectively evaluated on a larger cohort.