

13-14 décembre 2013

Symposium avec la participation des laboratoires Pfizer

Infections à agents filamenteux : diagnostic & attitude thérapeutique

- > Introduction : S. Abdellatif
- > Infections à champignons filamenteux en oncohématologie : S. Ladeb
- Rôle du laboratoire dans le diagnostic des aspergilloses invasives: K. kallel
- Stratégie de prise en charge des infections aspergillaires : S. Abdellatif

Recommandations (Fungi and Aspergillus) IFI/ID

- > 2000
 - > IDSA: aspergilloses et candidoses
- > 2001
 - Société Allemande d'hémato/cancéro: mycoses invasives
- > 2003
 - > Société Espagnole de infectio/microbio: aspergilloses
- > 2004
 - > CHRU Lille: Aspergilloses et candidoses
 - Consensus Français: aspergilloses et candidoses
 - > IDSA: candidoses
- > 2005
 - > 1er ECIL: IFI en hématologie
- > 2006
 - Société Andalouse de MI: mycoses invasives
- > 2007
 - > 2ème ECIL: IFI en hématologie
- > 2008
 - > IDSA: aspergilloses
- > 2009
 - > IDSA: candidoses
- 2010: 3ème ECIL: IFI en hématologie
- > 2011 : ECMID

High incidence in patients in the ICU^{2,3}

In an international one day point prevalence study of infection in the ICU, 51% of patients were considered infected...

70% of infected patients had positive microbial isolates. Of these

- 17% were infected with Candida species³
- 1 4 % were infected with Aspergillus species³

IFIs are associated with high morbidity and mortality in critically ill patients^{1,4}

7. Olaechea PM, et al. Eur J Clin Microbiol Infect Dis 2004

Mortality is high in both IC and IA

Attributable mortality due to IC in ICU patients 49%⁴

Mortality due to proven IA in ICU patients **70**%⁷

IFIs in ICU patients are almost exclusively due to Candida or Aspergillus species³

IC

Candida albicans is the most common cause of IFI in ICU patients⁴

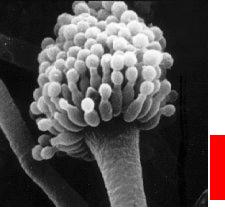
Increasing incidence of Candida non-albicans which is associated with higher mortality⁴

IA

IA is a rare devastating infection in the general ICU population, but some centres have reported elevated incidences⁵

- 3: JL Vincent, JAMA 2009
- 4. Guery BP, et al. Intensive Care Med 2009
- 5. Glockner A, et al. Mycoses 2010.

- > Introduction : S. Abdellatif
- > Infections à champignons filamenteux en oncohématologie : S. Ladeb
- Rôle du laboratoire dans le diagnostic des aspergilloses invasives: K. kallel
- Stratégie de prise en charge des infections aspergillaires : S. Abdellatif



13-14 décembre 2013

Stratégie de prise des Infections Aspergillaires

Dr S. ABDELLATIF, A.TRIFI, F.DALY, S.BEN LAKHAL Service de Réanimation Médicale. H. La RABTA

- L'espèce Aspergillus fumigatus est responsable de plus de 80% des aspergilloses humaines.
- Totalement inoffensif pour la majorité de la population, il peut cependant provoquer différentes formes de mycoses chez certains individus à risque.
- > L'aspergillose invasive touche les sujets immunodéprimés
- Elle est la seconde cause de mortalité par infection fongique à l'hôpital.
- > Plus le traitement est tardif, plus la mortalité est élevée

Mécanisme

Type et quantité de spores inhalées

Défenses immunes de l'hôte

(neutrophiles, îmmunité cellulaire)

Etat anatomique du poumon sous-jacent

(clairance muco-ciliaire)

Pathologie résultante

Aspergillose pulmonaire

Alvéolite allergique extrinsèque

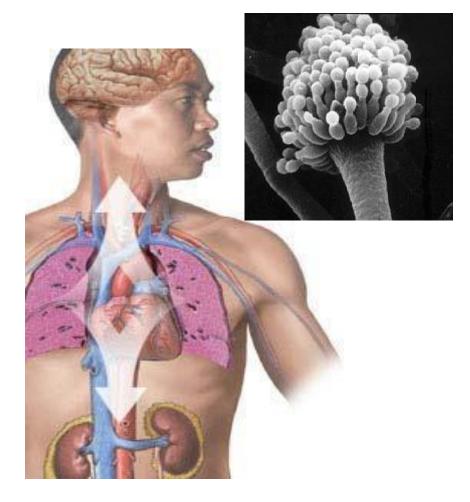
Aspergillome

Inhalation

Colonisation

Trachéobronchite micro-invasive

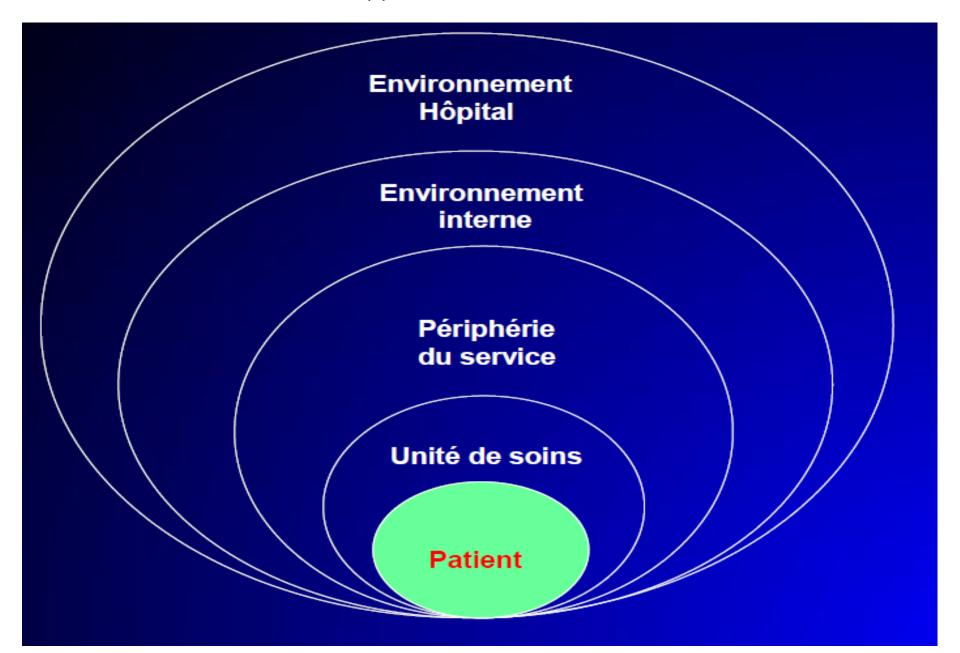
Aspergillose chronique nécrosante


Aspergillose invasive pulmonaire


Asthme


Aspergillose bronchopulmonaire allergique

Aspergillose invasive extrapulmonaire


aspergillose rénale, spondylodiscite aspergillaire, méningite à aspergillus

Philippe Montravers, 2012

Travaux et poussières = RISQUE ASPERGILLAIRE

Classification

Aspergillose Invasive (AI)

- · Aigüe (<1 mois)
- Subaigüe/chronique nécrosante (1-3 mois)

Aspergillose chronique (>3 mois)

- · Forme cavitaire pulmonaire chronique
- · Aspergillome pulmonaire
- · Forme chronique pulmonaire fibrosante
- Sinusite chronique invasive
- Aspergillome maxillaire (sinus)

Manifestations allergiques

- Aspergillose bronchopulmonaire (ABPA)
- · Alvéolite allergique extrinsèque (EAA)
- Asthme avec sensibilisation aux champignons
- Sinusite allergique aspergillaire (rhinosinusite fungique à éosinophiles)

Exposition aérienne aux spores d'Aspergillus

Persistence sans maladie colonisation des voies aériennes/nez/sinus

Facteurs de risque d'IA

Meersseman W et al. Clin Infect Dis 2007;45:205-16

- > Haut risque
 - > Neutropénie
 - Onco-hémato
 - Greffe de cellules souches hématopoiëtiques
- > Risque intermédiaire
 - Corticothérapie au long cours
 - > Greffe de moelle autologue
 - > BPCO
 - Cirrhose avec durée de séjour en réa > 7 j
 - > Tumeur solide
 - > VIH
 - > Transplantation pulmonaire
 - > Trt immunosuppresseur
- > Risque faible
 - > Brulés
 - Autres transplantations
 - Corticothérapie < 7 j</p>
 - Séjour en réa > 21 j
 - Malnutrition
 - > Postop chirurgie cardiaque

IA risk factors in ICU patients

High risk11

Neutropaenia

Haematological malignancy

Allogeneic bone marrow transplantation

Intermediate risk¹¹

Prolonged treatment with corticosteroids before admission to the ICU

Autologous bone marrow transplantation

COPD

Liver cirrhosis with duration of stay in the ICU of >7 days

Solid organ cancer

HIV infection

Lung transplantation

Systemic disease requiring immunosuppressive therapy

Low risk¹¹

Severe burns

Other solid organ transplant


Steroid treatment ≤7 days

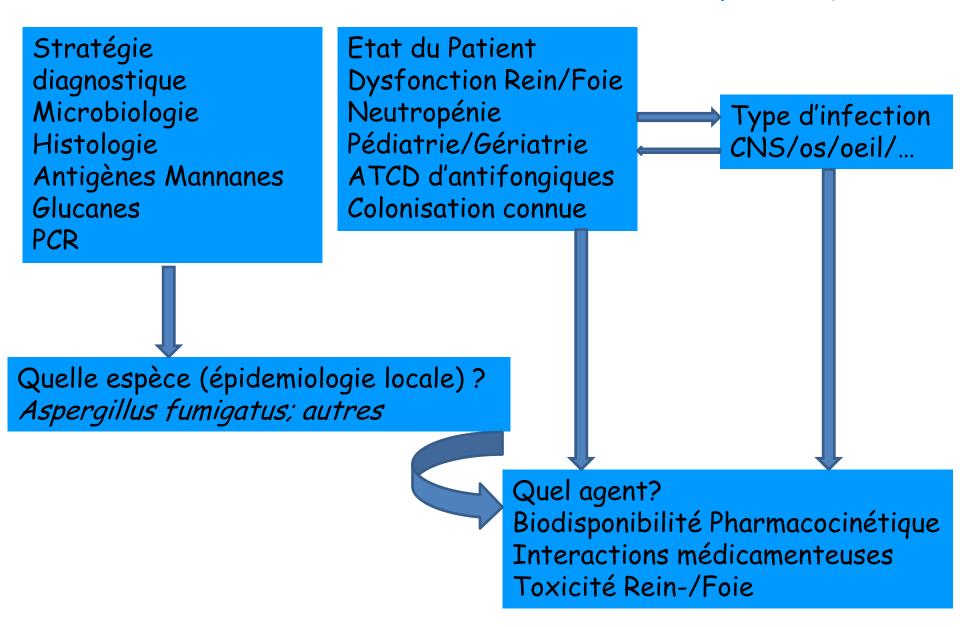
Prolonged stay in the ICU (>21 days)

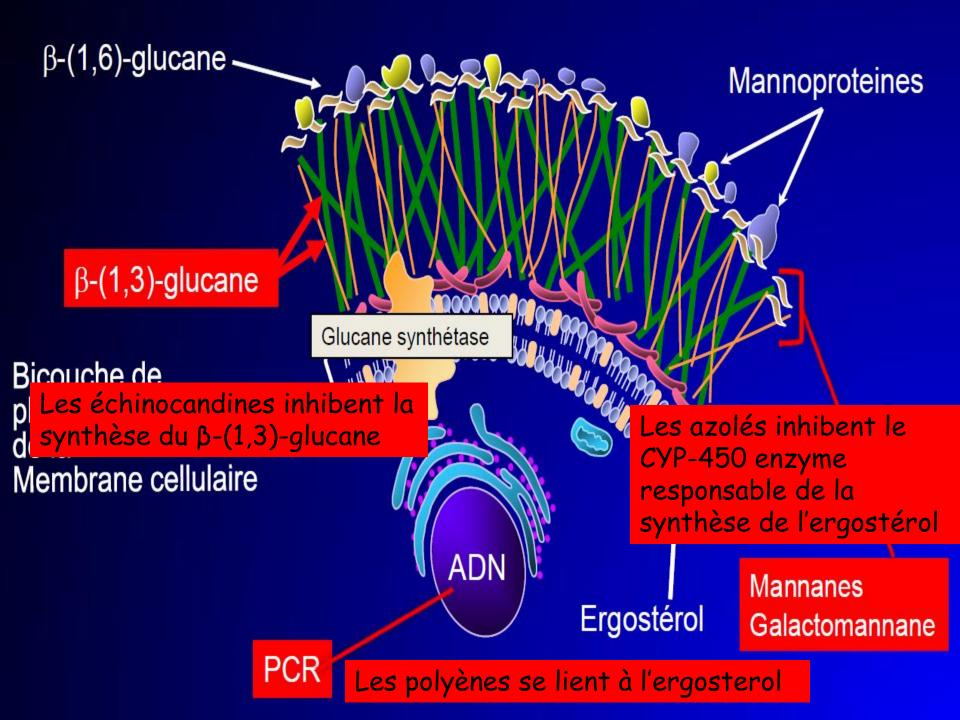
Malnutrition

Post cardiac surgery

Lien entre facteurs de risque et fréquence d'AI

Degré d'immunosuppression


Incidence des AI selon le stade des pathologies sous jacentes


Réseau français 2005 - 2007

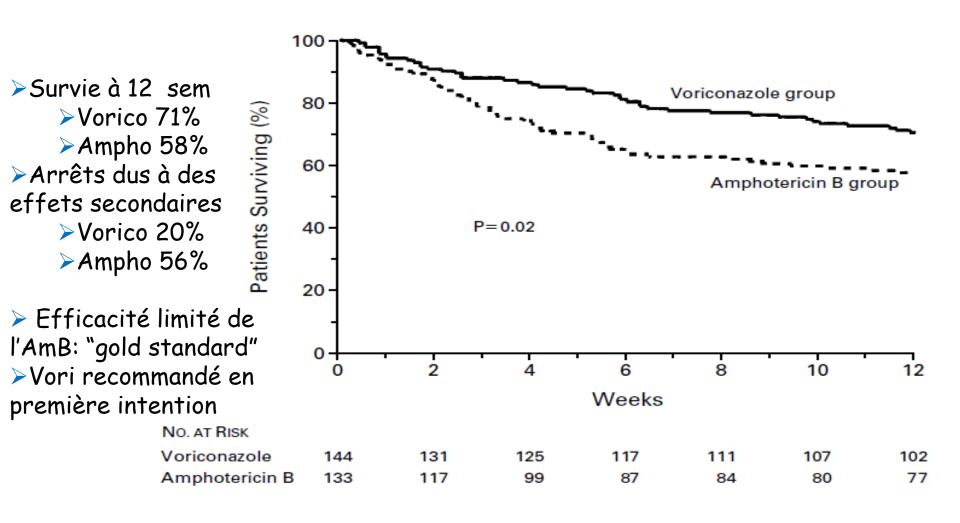
O Lortholary Clin Microbiol Infect 2011;17:1882-9

Leucémie aiguë	68% Induction de chimiothérapie	27% Consolidation	5% soins palliatifs
Greffe de moelle allogénique	19% <40 jours post-greffe	13% ≥40 j et <100 j post-greffe	68% >100 j post-greffe
Transplantation cardiaque	86% <12 semaines post- transplantation		14% ≥12 semaines post- transplantation
Autres transplantations	33% <100 jours post- transplantation		67% ≥100 jours post- transplantation

Eléments de raisonnement thérapeutique

Activité des antifongiques

Greer ND. Proc Bayl Univ Med Cent 2007


	AMB	ITZ	FCZ	VCZ	PCZ	Candines
A. Fumigatus	++	+ (77%)	-	++	++	++
A. flavus	+(62%)	++	-	++	++	++
A. niger	++	+/-(36%)	-	++	++	++
A. Terreus	+/-(37%)	++	-	++	++	++

Herbrecht ICHS 2007 Walsh CID 2008

- Première ligne
 - > Voriconazole: A1 IDSA, A1 ECIL
 - > AmphoB liposomale: A1 IDSA, B1 ECIL

VORICONAZOLE VERSUS AMPHOTERICIN B FOR PRIMARY THERAPY OF INVASIVE ASPERGILLOSIS

Herbrecht R et al. N Engl J Med 2002

Voriconazole Posologies

	Voie	Suspension buvable		
	intraveineuse	Patients ≥ 40	Patients <40	
		kg	kg	
Dose de	6 mg/kg toutes	400 mg (10	200 mg (5 ml)	
charge	les 12	ml) toutes	toutes	
(pendant les premières 24	heures	les 12 heures	les 12 heures	
heures)	(pendant les	(pendant les	(pendant les	
	premières	premières	premières	
	24 heures)	24 heures)	24 heures)	
Dose	4 mg/kg deux	200 mg (5	100 mg (2,5	
d'entretien	fois par jour	ml)deux fois	ml) deux fois	
(après les		par jour	par jour	
premières 24 heures)				

Adaptation de la dose

Si la réponse du patient n'est pas suffisante, la dose d'entretien peut être augmentée à 300 mg deux fois par jour pour l'administration orale. Chez les patients de moins de 40 kg, la dose orale peut être augmentée à 150 mg deux fois par jour.

Durée du traitement

> Mal définie

- > 2- 6 semaines pour la réponse clinique et 10-12 semaines pour la réponse complète
- Durant la période de l'immunosuppression et jusqu'à disparition des lésions chez les patients immunodéprimés

VCZ et AI Considérations importantes

- > Traitement de première ligne
- Voie orale chaque fois que possible (coût)
- Dysfonction hépatique
 - > Réduire les doses
 - > Evaluer les concentrations plasmatiques
- > Interactions médicamenteuses
 - > Evaluer les concentrations plasmatiques des immunosuppresseurs
- Métabolisme
 - > Concentration élevée accrue chez les pts faibles métabolisateurs
 - > Associé à des effets secondaires accrus
- > Dysfonction rénale
 - > Seulement voie orale

SUIVI DU TRAITEMENT

- 1. Evaluation clinique régulière
- 2. TDM à intervalles réguliers
- 3. Monitoring de l'antigénemie aspergillaire
 - Une ascencion progressive de l'antigénemie aspergillaire est de mauvais pronostic
 - Des taux de réponse élevés sont observés chez les patients avec une antigénémie qui redevient négative sous traitement
 - La négativation de l'antigénémie n'est pas un critère suffisant pour décider l'arrêt du traitement antifongique

Traitements alternatifs de l'AI (Echec ou intolérance du Voriconazole)

- > Formulations lipidiques d'amphotericin B (FLAB)
 - Liposomal amphotericin B (Ambisome®)
 - > Amphotericin B lipid complex ABLC (Abelcet®)
 - > Amphotericin B colloidal dispersion ABCD (Amphotec®)
- > Echinocandines
 - Caspofungine (Cancidas®): en 2ème ligne dans le traitement de l'AI. Indiquée dans l'AI probable ou certaine en cas d'échec ou d'intolérance au Voriconazole
 - Micafungine
- > Association d'antifongiques

Associations d'antifongiques

En l'absence d'essai clinique prospectif bien contrôlé, l'administration d'associations d'antifongiques en 1ère ligne n'est pas recommandée en routine.

➤ En rattrapage : l'adjonction d'un antifongique de classe différente peut être envisagée

Traitement chirurgical

- > Résection chirurgicale du tissu infecté
 - Lésions contigües aux gros vaisseaux ou au péricarde
 - >Lésions causant une hémoptysie
 - Lésions causant l'érosion de la plèvre ou des côtes

- > Faible niveau de suspicion
- Cultures positives souvent négligées et considérées comme colonisation ou contamination

> Absence de diagnostic de référence fiable

Auteurs	Ans	Type d'étude	Type de patients	N	Idc	mortalité
Lewis	1985	Série de cas	Al compliquant pneumonie virale à influenza	6		100%
Karam	1986	Série de cas	Pts non-neutrop (fibroses, BPCO, virus) corticoides, diabète alcoolisme	32		100%
Janssen	1996	Rétro	Pts réa méd avec hémopathie maligne, maladie de système, SDRA	25		92%
Pittet	1996	Cas cliniques	Pts réa méd, BPCO. Al sous VMC par contamination aérienne intense	2		100%
Rello	1998	Série de cas	Pts BPCO	24		100%
Valles	2002	Série de cas	PAVM/BPCO: Asperg.		17%	77%
Mersseman	2004	Série de cas	Réa méd. 5 pts avec AI sans F.R (dont 3 cirrhose Child C)	17	5.8%	91%
Garnacho- Montero	2005	Série de cas. X centriques	73 Unités de réa en Espagne. Pts DS > 7 js	20	1.1%	80%
Vandewoud	2006	Rétrospective	Réa poly 40% pts d'hémato	83	3.3‰	77%

Deux problèmes différents

- > Patients admis en réanimation avec une AI
 - > ex greffe de moelle AI prouvée/probable et insuff respiratoire aigue
 - > 100% décès?
- > Diagnostic d'AI fait en réanimation
 - > Communautaire
 - > Nosocomial (Acquise en réanimation); travaux?
 - > Pronostic sombre

Particularités de l'AI en réanimation

Engelich G. Clin Infect Dis 2001 Hartemink KJ. Intensive Care Med 2003 Lionakis M. Lancet 2003;

- Définitions de EORTC peu applicables hors des patients à haut risque. Pas utilisable pour guider le traitement
- Difficultés d'interprétation des facteurs liés à l'hôte
 - > Pas toujours clairement détectables
 - Immunosuppression liée à l'association de la maladie de fond et la maladie aigue avec probabilité faible ou intermédiaire d'une forme invasive
- > Altération de la fonction phagocytaire
- > Dysfonction d'organes, troubles métaboliques
- Corticoides : valeurs seuils en termes de dose ou de durée difficiles à établir

Particularités de l'AI en réanimation Imagerie

- Lésions pulmonaires associées altèrent l'interprétation
 - > Infiltrats résiduels, atélectasies, SDRA, ...
- > TDM faisable ou non?
 - En cas d'insuffisance respiratoire ou hémodynamique grave?
- Lésions "typiques" : signes du Halo et du croissant
 - > Faible incidence chez les non neutropéniques

Vandewoude KH et al. Crit Care 2006

Radiological findings in intensive care unit patients with invasive pulmonary aspergillosis or Aspergillus colonisation

Radiological finding	Invasive aspergillosis $(n = 83)^a$	Aspergillus colonisation ($n = 89$)
Normal ^b	0	30
Diffuse reticular or alveolar opacities (ARDS like)b	12 (1)	4
Non-specific infiltrates and consolidation	42 (10)	49
Pleural fluid	0	5
Nodular lesions ^b	25 (5)	1
Air-crescent sign	1	0
Halo sign	2 (1)	0
Cavitation		0

Cornillet A et al. Clin Infect Dis 2006;

Characteristic	Neutropenic patients (n = 52)	Nonneutropenic patients (n = 36)	All patients (n = 88)	P
Thoracic CT sign, n/N (%)				
Segmental areas of consolidation	26/42 (62)	9/24 (37.5)	35/66 (53)	.056
Nodules	18/42 (43)	11/24 (46)	29/66 (44)	.81
Cavitated nodules	8/42 (19)	6/24 (25)	14/66 (21)	.57
Ground-glass attenuation	15/42 (36)	5/24 (21)	20/66 (30)	.21
Pleural effusion	16/42 (38)	8/24 (33)	24/66 (36)	.7
Halo sign	4/42 (9.5)	0/24 (0)	4/66 (6)	.29
Air crescent sign	1/42 (2.5)	0/24 (0)	1/66 (1.5)	1
Bell sign	3/42 (7)	1/24 (4)	4/66 (6)	1
Aspergillosis cavity	6/42 (14)	2/24 (8)	8/66 (12)	.7

- Diagnostic microbiologique
 - > Prélèvements du poumon profond
 - > LBA pas toujours réalisable
 - > Valeur de l'examen direct des prélèvements (fort inoculum)
- Diagnostic histologique
 - > Transbronchique rarement possible
 - > Par thoracoscopie
 - Cavités

Dépendante du ventilateur, des pressions d'insufflation et Troubles de coagulation

Adaptation des critères diagnostiques

Vandewoude KH et al. Crit Care 2006

- > AI prouvée
 - > Histologie positive (+ culture) du tissu pulmonaire
 - > Culture positive d'un site normalement stérile
- > AI probable
 - Concentration aspergillaire plus faible dans poumon profond
 - > Image thoracique anormale

Ou

Facteurs de risque de l'hôte: neutropénie, cancer ou hémopathie maligne, traitement corticoides > 20 mg/j, déficit immunitaire

Ou

- LBA culture semiquantitative : +/++ sans croissance bactérienne associée
- > Et
 - > Examen direct montrant des filaments

Trof RJ et al. Intensive Care Med 2007;33;1694-1703

Table 2 Treatment options with antifungal drugs for IPA in critically ill patients in the ICU

Setting	First choice	Alternatives
Primary therapy of IPA	Voriconazole 6 mg/kg q 12 h i.v. on day 1, then 4 mg/kg q 12 h i.v.	Liposomal amphotericin B 3-5 mg/kg/day i. v.
	or	or
	Voriconazole 400 mg q 12 h oral on day 1, then 200 mg q 12 h oral ^a	Amphotericin B deoxycholate 1 mg/kg/day i.v.
		or
		Caspofungin 70 mg i.v. on day 1, then 50 mg/day i.v. b

^a Oral administration is recommended only in patients with intact intestinal absorption; ^b In patients with moderate to severe hepatic failure, dose reduction is recommended to 35 mg/day i. v.

Conclusions

- > Infections aspergillaires restent une menace vitale
- > Immunodéprimés et neutropéniques
- > Mais aussi les malades de pneumologie
- > Intérêt du Galactomannane (et D Glucane)
- > Voriconazole en première intention