Hemodynamic monitoring in critically ill patients

How to choose?

Prof. Jean-Louis TEBOUL

Medical ICU
Bicetre hospital
University Paris-South
France

Conflicts of interest

- Member of the Medical Advisory Board of **Getinge**
- Lectures for Edwards LifeSciences
- Lectures for Masimo
- Lectures for Cheetah

Various and intricate mechanisms responsible for hemodynamic failure in critically ill patients

vascular tone myocardial hypovolemia depression depression presence of associated ARDS fluids inotropes vasopressors Important to assess the **degree** of each **component** to select the most **appropriate therapeutic** option Important to assess the response to treatment

Available hemodynamic monitoring devices

AZZIE The missing link Urine Output Mental Status Pulse Pressure Variation PPV

CONFERENCE REPORTS AND EXPERT PANEL

Maurizio Cecconi
Daniel De Backer
Massimo Antonelli
Richard Beale
Jan Bakker
Christoph Hofer
Roman Jaeschke
Alexandre Mebazaa
Michael R. Pinsky
Jean Louis Teboul
Jean Louis Vincent
Andrew Rhodes

Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine

Intensive Care Med (2016) 42:1350-1

CONFERENCE REPORTS AND EXPERT PANEL

Less invasive hemodynamic monitoring in critically ill patients

Central venous catheter

Clinical assessment

Clinical assessment

Lactate

Echocardiography

Arterial catheter

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

Effect of a Resuscitation Strategy Targeting Peripheral
Perfusion Status vs Serum Lactate Levels on 28-Day Mortality
Among Patients With Septic Shock
The ANDROMEDA-SHOCK Randomized Clinical Trial

Glenn Hernández, MD, PhD; Gustavo A. Ospina-Tascón, MD, PhD; Lucas Petri Damiani, MSc; Elisa Estenssoro, MD; Arnaldo Dubin, MD, PhD; Javier Hurtado, MD; Gilberto Friedman, MD, PhD; Ricardo Castro, MD, MPH; Leyla Alegría, RN, MSc; Jean-Louis Teboul, MD, PhD; Maurizio Cecconi, MD, FFICM; Giorgio Ferri, MD; Manuel Jibaja, MD; Ronald Pairumani, MD; Paula Fernández, MD; Diego Barahona, MD; Vladimir Granda-Luna, MD, PhD; Alexandre Biasi Cavalcanti, MD, PhD; Jan Bakker, MD, PhD; for the ANDROMEDA-SHOCK Investigators and the Latin America Intensive Care Network (LIVEN)

JAMA Published online February 17, 2019

ORIGINAL

Bart Hiemstra^{1*}, Geert Koster¹, Renske Wiersema¹, Yoran M. Hummel², Pim van der Harst², Harold Snieder³, Ruben J. Eck¹, Thomas Kaufmann⁴, Thomas W. L. Scheeren⁴, Anders Perner^{5,6}, Jørn Wetterslev^{6,7}, Anne Marie G. A. de Smet¹, Frederik Keus¹, Iwan C. C. van der Horst¹ and SICS Study Group¹

Intensive Care Med (2019) 45:190-200

Intensive Care Med (2016) 42:1350–1

CONFERENCE REPORTS AND EXPERT PANEL

Less invasive hemodynamic monitoring in critically ill patients

Central venous catheter

- ➤ Helpful to diagnose **RV dysfunction**
- ➤ Helpful to **target** the optimal **MAP**

Low mean perfusion pressure is a risk factor for progression of acute kidney injury in critically ill patients – A retrospective analysis

Marlies Ostermann^{1*}, Anna Hall² and Siobhan Crichton³

BMC Nephrology (2017) 18:151

Mean perfusion pressure (MPP = MAP-CVP) but **not MAP** was an independent factor associated with **AKI progression**.

A value of MPP of 60 mmHg was found as a cutoff.

- ➤ Helpful to diagnose **RV dysfunction**
- > Helpful to **target** the optimal **MAP**
- > Not helpful to predict fluid responsiveness

Does the Central Venous Pressure Predict Fluid Responsiveness? An Updated Meta-Analysis and a Plea for Some Common Sense*

Paul E. Marik, MD, FCCM¹; Rodrigo Cavallazzi, MD²

Crit Care Med 2013; 41:1774-81

$$SvO_2 = SaO_2 - CO \times Hb \times 13.4$$

ScvO₂ is an acceptable reflection of SvO₂

ScvO₂ indicator of VO₂ / DO₂ balance

Intensive Care Med (2013) 39:165-228

GUIDELINES

R. P. Dellinger
Mitchell M. Levy
Andrew Rhodes
Djillali Annane
Herwig Gerlach
Steven M. Opal
Jonathan E. Sevransky
Charles L. Sprung 1. Pro
Ivor S. Douglas
Roman Jaeschke
Tiffany M. Osborn

Mark E. Nunnally

Sean R. Townsend Konrad Reinhart

Ruth M. Kleinpell

Clifford S. Deutschman

Derek C. Angus

Surviving Sepsis Campaign: Int Guidelines for Management of and Septic Shock, 2012

Initial resuscitation

Charles L. Sprung
 Ivor S. Douglas
 Roman Jaeschke
 Protocolized, quantitative resuscitation of patients with sepsis-induced hypoperfusion (defined as hypotension persisting after initial fluid challenge or blood lactate ≥ 4 mmol/L).
 Goals during the first 6h of resuscitation:

- (a) Central venous pressure 8-12 mmHg
- (b) Mean arterial pressure (MAP) ≥ 65 mmHg
- (c) Urine output \geq 0.5 mL.kg⁻¹ h
- (d) Central venous or mixed venous oxygen saturation 70 or 65%, respectively

CONFERENCE REPORTS AND EXPERT PANEL

Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016

Andrew Rhodes^{1*}, Laura E. Evans², Waleed Alhazzani³, Mitchell M. Levy⁴, Massimo Antonelli⁵, Ricard Ferrer⁶,

No mention to ScvO₂ anywhere in the 93 recommendations!!

Christopher W. Seymour *, Lisa Shien *, Khaild A. Shukri *, Steven Q. Simpson *, Mervyn Singer *, B. Taylor Thompson *, Sean R. Townsend *, Thomas Van der Poll *, Jean-Louis Vincent *, W. Joost Wiersinga *, Janice L. Zimmerman *, and R. Phillip Dellinger *, Janice L. Zimmerman *, and R. Phillip Dellinger *, and R. Phillip Philli

Intensive Care Med (2017) 43:304–377

Arise

Goal-Directed Resuscitation for Patients with Early Septic Shock

The ARISE Investigators and the ANZICS Clinical Trials Group*

N Engl J Med 2014;371:1496-506

Promise

Trial of Early, Goal-Directed Resuscitation for Septic Shock

Paul R. Mouncey, M.Sc., Tiffary M. Osborn, M.D., G. Sarah Power, M.Sc., David A. Harrison, Ph.D., M. Zia Sadique, Ph.D., Richard D. Grieve, Ph.D., Rahi Jahan, B.A., Sheila E. Harvey, Ph.D., Derek Bell, M.D., Julian F. Bion, M.D., Timothy J. Coats, M.D., Mervyn Singer, M.D., J. Duncan Young, D.M., and Kathryn M. Rowan, Ph.D., for the ProMISE Trial Investigators*

N Engl | Med 2015;372:1301-11

Process

A Randomized Trial of Protocol-Based Care for Early Septic Shock

The ProCESS Investigators*

N Engl J Med 2014;370:1683-93

No improved survival with EGDT

Goal-Directed Resuscitation for Patients with Early Septic Shock

The ARISE Investigators and the ANZICS Clinical Trials Group*

N Engl J Med 2014;371:1496-506

Trial of Early, Goal-Directed Resuscitation for Septic Shock

Paul R. Mouncey, M.Sc., Tiffany M. Osborn, M.D., G. Sarah Power, M.Sc., David A. Harrison, Ph.D., M. Zia Sadique, Ph.D., Richard D. Grieve, Ph.D., Rahi Jahan, B.A., Shelia E. Harvey, Ph.D., Derek Bell, M.D., Julian F. Bion, M.D., Timothy J. Coats, M.D., Mervyn Singer, M.D., J. Duncan Young, D.M., and Kathyn M. Rowan, Ph.D., for the ProMISE Trial Investigators*

N Engl I Med 2015:372:1301-11

Process

A Randomized Trial of Protocol-Based Care for Early Septic Shock

The ProCESS Investigators*

N Engl J Med 2014;370:1683-93

Caution:

- Patients were far **less sick** than in the Rivers' study
- Mean ScvO₂ was already > 70% (the target) at inclusion time
 - > Pts received 2,500 mL fluids before inclusion

By designetites teams ototeld anout shows any the enefit the utility of targeting regeting ScvO₂ >770% when it is low

CONFERENCE REPORTS AND EXPERT PANEL

Maurizio Cecconi Daniel De Backer Massimo Antonelli Richard Beale Jan Bakker Christoph Hofer Roman Jaeschke Alexandre Mebazaa Michael R. Pinsky Jean Louis Teboul Jean Louis Vincent Andrew Rhodes Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine

In patients with a central venous catheter, we suggest measurements
of ScvO₂ and v-aPCO₂ to help assess the underlying pattern and the
adequacy of cardiac output as well as to guide therapy

Level 2; QoE moderate (B)

Intensive Care Med (2016) 42:1350-1

CONFERENCE REPORTS AND EXPERT PANEL

Less invasive hemodynamic monitoring in critically ill patients

 $ScvO_2$ is used as a surrogate of mixed venous blood oxygen saturation (SvO_2), which reflects in real time the balance between oxygen consumption and oxygen delivery. Hence, a low $ScvO_2$ may indicate insufficient global oxygen delivery in case of shock and incite one to increase it.

CONFERENCE REPORTS AND EXPERT PANEL

Maurizio Cecconi Daniel De Backer Massimo Antonelli Richard Beale Jan Bakker Christoph Hofer Roman Jaeschke Alexandre Mebazaa Michael R. Pinsky Jean Louis Teboul Jean Louis Vincent Andrew Rhodes Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine

In patients with a central venous catheter, we suggest measurements
of ScvO₂ and v-aPCO₂ to help assess the underlying pattern and the
adequacy of cardiac output as well as to guide therapy

Level 2; QoE moderate (B)

Intensive Care Med (2016) 42:1350-1

CONFERENCE REPORTS AND EXPERT PANEL

Less invasive hemodynamic monitoring in critically ill patients

coupling arterial and central venous blood sampling allows calculation of the venous-to-arterial carbon dioxide pressure difference (PCO_2 gap), which could be a good indicator of the adequacy of CO relative to the actual global metabolic conditions and could be helpful in conditions where oxygen extraction is altered while $ScvO_2$ is within the normal range. In this particular case, an abnormally high PCO_2 gap (>6 mmHg) could suggest that CO should be elevated to improve tissue oxygenation

simplified
Fick equation

 PcvCO₂ - PaCO₂ marker of "adequacy" of venous blood flow to clear the CO₂ produced in the peripheral tissues

- A normal $\triangle PCO_2$ suggests that elevation of CO cannot be a priority in the therapeutic strategy
- A high ΔPCO₂ suggests that elevation of CO
 can be a good therapeutic option

Intensive Care Med (2016) 42:1350-1

CONFERENCE REPORTS AND EXPERT PANEL

Less invasive hemodynamic monitoring in critically ill patients

coupling arterial and control vanous blood sampling allows

coupling arterial and central venous blood sampling allows calculation of the venous-to-arterial carbon dioxide pressure difference (PCO_2 gap), which could be a good indicator of the adequacy of CO relative to the actual global metabolic conditions and could be helpful in conditions where oxygen extraction is altered while $ScvO_2$ is within the normal range. In this particular case, an abnormally high PCO_2 gap (>6 mmHg) could suggest that CO should be elevated to improve tissue oxygenation

Arterial Pulse Pressure Variation with Mechanical Ventilation

Jean-Louis Teboul¹, Xavier Monnet¹, Denis Chemla², and Frédéric Michard³

Am J Respir Crit Care Med Vol 199, Iss 1, pp 22-31, Jan 1, 2019

Arterial Pulse Pressure Variation with Mechanical Ventilation

Jean-Louis Teboul¹, Xavier Monnet¹, Denis Chemla², and Frédéric Michard³

Am J Respir Crit Care Med Vol 199, lss 1, pp 22-31, Jan 1, 2019

Relation between Respiratory Changes in Arterial Pulse Pressure and Fluid Responsiveness in Septic Patients with Acute Circulatory Failure

FRÉDÉRIC MICHARD, SANDRINE BOUSSAT, DENIS CHEMLA, NADIA ANGUEL, ALAIN MERCAT, YVES LECARPENTIER, CHRISTIAN RICHARD, MICHAEL R. PINSKY, and JEAN-LOUIS TEBOUL

Am J Respir Crit Care Med 2000; 162:134-8

Does pulse pressure variation predict fluid responsiveness in critically ill patients? A systematic review and meta-analysis

22 studies Xiaobo Yang and Bin Du*

Critical Care 2014, 18:650

807 pts

Applicability of pulse pressure variation: how many shades of grey?

Frederic Michard^{1*}, Denis Chemla² and Jean-Louis Teboul³

Critical Care (2015) 19:144

Tidal volume challenge

Transient (1 min) increase
in tidal volume
from 6 to 8 mL/kg

Tidal volume challenge to predict fluid responsiveness in the operating room

A prospective trial on neurosurgical patients undergoing protective ventilation

Antonio Messina, Claudia Montagnini, Gianmaria Cammarota, Silvia De Rosa, Fabiana Giuliani, Lara Muratore, Francesco Della Corte, Paolo Navalesi and Maurizio Cecconi

Eur J Anaesthesiol 2019; **36:**1-9

ΔPPV = **increase** in **PPV** during **TVC**

ΔSVV = **increase** in **SVV** during **TVC**

CONFERENCE REPORTS AND EXPERT PANEL

Less invasive hemodynamic monitoring in critically ill patients

Transpulmonary thermodilution

→ Intermittent cardiac output

Pulse contour analysis

→ Continuous cardiac output

Transpulmonary thermodilution

systems are not just

CO monitoring systems

Transpulmonary thermodilution: advantages and limits

Xavier Monnet^{1,2,3*} and Jean-Louis Teboul^{1,2}

Critical Care (2017) 21:147

GEDV

a measure of global cardiac preload

Transpulmonary thermodilution: advantages and limits

Xavier Monnet^{1,2,3*} and Jean-Louis Teboul^{1,2}

Critical Care (2017) 21:147

CFI and **GEF**

markers of

global systolic function

Transpulmonary thermodilution: advantages and limits

Xavier Monnet^{1,2,3*} and Jean-Louis Teboul^{1,2}

Critical Care (2017) 21:147

EVLW

quantitative measure

of pulmonary edema

Open Access

CrossMark

Extravascular lung water in critical care: recent advances and clinical applications

Mathieu Jozwiak^{1,2,3*}, Jean-Louis Teboul^{1,2,3} and Xavier Monnet^{1,2,3}

	Study	Number of patients	Prognostic value
General critically ill patients	Sakka et al. [4]	373	Independent predictor of ICU mortality
Severe sepsis or septic	Martin et al. [3]	29	Higher EVLWI in ICU non-survivors
shock patients	Chung et al. [75]	33	Independent predictor of in- hospital survival
	Chung et al. [76]	67	Independent factor for the development of MODS
	Chew et al. [73]	51	Higher EVLWI in ICU non-survivors
	Mallat et al. [78]	55	Independent predictor of ICU mortality
ARDS patients	Philips [85]	59	Good predictor of ICU mortality
	Craig et al. [45]	44	Independent predictor of ICU mortality
	Brown et al. [37]	59	Independent predictor of ICU mortality
	Jozwiak et al. [36]	200	Independent predictor of Day-28 mortality

Transpulmonary thermodilution: advantages and limits

Xavier Monnet^{1,2,3*} and Jean-Louis Teboul^{1,2}

Critical Care (2017) 21:147

PVPI

measure of

lung capillary leak

Intensive Care Med (2007) 33:448–453	ORIGINAL
Xavier Monnet Nadia Anguel David Osman Olfa Hamzaoui Christian Richard Jean-Louis Teboul	Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI/ARDS

cut-off = 3 Se = 85 % Sp = 100 %

Extravascular Lung Water is an Independent Prognostic Factor in Patients with Acute Respiratory Distress Syndrome

Mathieu Jozwiak, MD; Serena Silva, MD; Romain Persichini, MD; Nadia Anguel, MD; David Osman, MD; Christian Richard, MD; Jean-Louis Teboul, MD, PhD; Xavier Monnet, MD, PhD

Crit Care Med 2013;41:472-480

PVPI is an independent predictor of mortality in ARDS patients

200 pts

/		Odds R	p value	
	Maximal blood lactate	1.27	(1.12 - 1.45)	0.0002
	Mean PEEP	0.78	(0.67 – 0.91)	0.002
l	Minimal PaO ₂ / FiO ₂	0.98	(0.97 - 0.99)	0.0009
	SAPS II	1.03	(1.01 - 1.05)	0.008
	PVPI _{max}	1.07	(1.02 - 1.12)	0.03
	Mean fluid balance	1.0004	(1.0000 – 1.0007)	0.03

D₂₈ mortality 54%

Transpulmonary thermodilution: advantages and limits

Xavier Monnet^{1,2,3*} and Jean-Louis Teboul^{1,2}

Critical Care (2017) 21:147

Continuous cardiac output (CCO)

Useful for performing diagnostic and therapeutic tests

(PLR, fluid challenge, etc...)

Transpulmonary thermodilution: advantages and limits

Xavier Monnet^{1,2,3*} and Jean-Louis Teboul^{1,2}

Critical Care (2017) 21:147

SVV and **PPV**

for guiding

fluid administration

Transpulmonary thermodilution systems

Useful for guiding fluid management especially in patients with ARDS and septic shock

Fluid infusion benefit / risk ratio

- What to do when **PPV** or **SVV** are **not interpretable**?
- EVLW and PVPI for assessing lung tolerance to fluid infusion

─ decision

- to start
- to continue fluid infusion
- to stop

Intensive Care Med (2008) 34:659-663

CLINICAL COMMENTARY

Xavier Monnet Jean-Louis Teboul **Passive leg raising**

PLR mimics fluid challenge

The hemodynamic response to PLR

can predict the hemodynamic response to volume infusion

EDITORIAL

Passive leg raising: five rules, not a drop of fluid!

Xavier Monnet^{1,2*} and Jean-Louis Teboul^{1,2}

Crit Care 2015, 19:18

Intensive Care Med (2016) 42:1935–1947 DOI 10.1007/800154-015-4134-1

ORIGINAL

Xavier Monnet Paul Marik Jean-Louis Teboul Passive leg raising for predicting responsiveness: a systematic rev

21 clinical studies

Transpulmonary thermodilution systems

Useful for guiding fluid management especially in patients with ARDS and septic shock

Fluid infusion benefit / risk ratio

• PPV and SVV, if applicable

- prediction of **fluid responsiveness**
- Pulse contour CO response to PLR
- EVLW and PVPI for assessing lung tolerance to fluid infusion

─ decision

- to start
- to continue fluid infusion
- to stop

CONFERENCE REPORTS AND EXPERT PANEL

Less invasive hemodynamic monitoring in critically ill patients

Continuous CO and SvO₂ monitoring

+

Intermittent measurements of

RAP PAP PAOP

•

Intermittent calculation of DO₂, VO₂, PCO₂ gap

Intensive Care Med (2016) 42:1350-1

CONFERENCE REPORTS AND EXPERT PANEL

Less invasive hemodynamic monitoring in critically ill patients

Available hemodynamic monitoring devices

Fluid resuscitation during early sepsis: a need for individualization

Mathieu JOZWIAK 1, 2, Olfa HAMZAOUI 3, Xavier MONNET 1, 2, Jean-Louis TEBOUL 1, 2 *

Minerva Anestesiologica 2018 August;84(8):987-92

Fluid resuscitation during early sepsis: a need for individualization

Mathieu JOZWIAK 1, 2, Olfa HAMZAOUI 3, Xavier MONNET 1, 2, Jean-Louis TEBOUL 1, 2 *

Minerva Anestesiologica 2018 August;84(8):987-92

1) Does shock persist? — clinical signs, lactate

2) If yes, try to optimize the macrocirculation

Check if MAP adequate

If MAP – CVP adequate

Check if DO₂ adequate to VO₂

- 1) Does shock persist? clinical signs, lactate
- 2) If yes, try to optimize the macrocirculation

Check if DO₂ adequate to VO₂
ScvO₂

1) Does shock persist? — clinical signs, lactate

2) If yes, try to optimize the macrocirculation

depressed

arterial tone

Vasopressors

Insufficient

CO

Intensive Care Med (2016) 42:1350-1

CONFERENCE REPORTS AND EXPERT PANEL

Less invasive hemodynamic monitoring in critically ill patients

ScvO₂ is used as a surrogate of mixed venous blood oxygen saturation (SvO₂), which reflects in real time the balance between oxygen consumption and oxygen delivery. Hence, a low ScvO₂ may indicate insufficient global oxygen delivery in case of shock and incite one to increase it. However, there are situations where absolute values as well as dynamic changes of ScvO₂ and SvO₂ differ [65].

- 1) Does shock persist? clinical signs, lactate
- 2) If yes, try to optimize the macrocirculation

Inotropes?

- 1) Does shock persist? clinical signs, lactate
- 2) If yes, try to optimize the macrocirculation

Intensive Care Med (2014) 40:1795-1815

CONFERENCE REPORTS AND EXPERT PANEL

Maurizio Cecconi Daniel De Backer Massimo Antonelli Richard Beale Jan Bakker Christoph Hofer Roman Jaeschke Alexandre Mebazaa Michael R. Pinsky Jean Louis Teboul Jean Louis Vincent Andrew Rhodes Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine We recommend using

dynamic over static variables

to predict fluid responsiveness,

when applicable

CONFERENCE REPORTS AND EXPERT PANEL

Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016

Andrew Rhodes^{1*}, Laura E. Evans², Waleed Alhazzani³, Mitchell M. Levy⁴, Massimo Antonelli⁵, Ricard Ferrer⁶, Anand Kumar⁷, Jonathan E. Sevransky⁸, Charles L. Sprung⁹, Mark E. Nunnally², Bram Rochwerg³, Gordon D. Rubenfeld¹⁰, Derek C. Angus¹¹, Djillali Annane¹², Richard J. Beale¹³, Geoffrey J. Bellinghan¹⁴, Gordon R. Bernard¹⁵, Jean-Daniel Chiche¹⁶, Craig Coopersmith⁸, Daniel P. De Backer¹⁷, Craig J. French¹⁸, Seitaro Fujishima¹⁹, Herwig Gerlach²⁰, Jorge Luis Hidalgo²¹, Steven M. Hollenberg²², Alan E. Jones²³, Dilip R. Karnad²⁴, Ruth M. Kleinpell²⁵, Younsuk Koh²⁶, Thiago Costa Lisboa²⁷, Flavia R. Machado²⁸, John J. Marini²⁹, John C. Marshall³⁰, John E. Mazuski³¹, Lauralyn A. McIntyre³², Anthony S. McLean³³, Sangeeta Mehta³⁴, Rui P. Moreno³⁵, John Myburgh³⁶, Paolo Navalesi³⁷, Osamu Nishida³⁸, Tiffany M. Osborn³¹, Anders Perner³⁹, Colleen M. Plunkett²⁵, Marco Ranieri⁴⁰, Christa A. Schorr²², Maureen A. Seckel⁴¹, Christopher W. Seymour⁴², Lisa Shieh⁴³, Khalid A. Shukri⁴⁴, Steven Q. Simpson⁴⁵, Mervyn Singer⁴⁶, B. Taylor Thompson⁴⁷, Sean R. Townsend⁴⁸, Thomas Van der Poll⁴⁹, Jean-Louis Vincent⁵⁰, W. Joost Wiersinga⁴⁹, Janice I. Timmerman⁵¹ and R. Phillin Dellinger²²

Intensive Care Med (2017) 43:304–377

We suggest that

dynamic over static variables be used

to predict fluid responsiveness,

when available

CONFERENCE REPORTS AND EXPERT PANEL

Andrew Rhodes^{1*}, Laura E. Evans², Waleed Alhazzani³, Mitchell M. Levy⁴, Massimo Antonelli⁵, Ricard Ferrer⁶, Anand Kumar⁷, Jonathan E. Sevransky⁸, Charles L. Sprung⁹, Mark E. Nunnally², Bram Rochwerg³, Gordon D. Rubenfeld¹⁰, Derek C. Angus¹¹, Diillali Annane¹², Richard J. Beale¹³, Geoffrey J. Bellinghan¹⁴.

Intensive Care Med (2017) 43:304-377

We suggest that **dynamic** over **static** variables be used **to predict fluid responsiveness**, when available

Dynamic measures of

assessing whether a patient requires additional fluid have been proposed in an effort to improve fluid management and have demonstrated better diagnostic accuracy at predicting those patients who are likely to respond to a fluid challenge by increasing stroke volume. These techniques encompass passive leg raises, fluid challenges against stroke volume measurements, or the variations in systolic pressure, pulse pressure, or stroke volume to changes in intrathoracic pressure induced by mechanical ventilation

Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients

Xavier Monnet, MD, PhD; David Osman, MD; Christophe Ridel, MD; Bouchra Lamia, MD; Christian Richard, MD; Jean-Louis Teboul, MD, PhD

Crit Care Med 2009; 37:951-956

Passive leg-raising and end-expiratory occlusion tests perform better than pulse pressure variation in patients with low respiratory system compliance

Xavier Monnet, MD, PhD; Alexandre Bleibtreu, MD; Alexis Ferre, MD; Martin Dres, MD; Rim Gharbi, MD; Christian Richard, MD; Jean-Louis Teboul, MD, PhD

Crit Care Med 2012; 40:152-157

Respiratory system compliance

 $< 30 \text{ mL/cmH}_2\text{O}$

Functional hemodynamic tests: a systematic review and a metanalysis on the reliability of the end-expiratory occlusion test and of the mini-fluid challenge in predicting fluid responsiveness

Antonio Messina^{1*}, Antonio Dell'Anna^{2,3}, Marta Baggiani⁴, Flavia Torrini^{2,3}, Gian Marco Maresca^{2,3} Victoria Bennett⁵, Laura Saderi⁶, Giovanni Sotgiu⁶, Massimo Antonelli^{2,3} and Maurizio Cecconi^{1,7}

Critical Care (2019) 23:264

9 studies

The end-expiratory occlusion test: please, let me hold your breath!

Francesco Gavelli^{1,2,3*}, Jean-Louis Teboul^{1,2} and Xavier Monnet^{1,2}

Critical Care (2019) 23:274

1) Does shock persist? — clinical signs, lactate

2) If yes, try to optimize the macrocirculation

If MAP – CVP adequate

yes no

DAP

low not low

depressed Insufficient
arterial tone CO

Vasopressors

Check if **MAP** adequate

1) Does shock persist? — clinical signs, lactate

1) Does shock persist? — clinical signs, lactate

Intensive Care Med (2016) 42:1350-1

CONFERENCE REPORTS AND EXPERT PANEL

Less invasive hemodynamic monitoring in critically ill patients

coupling arterial and central venous blood sampling allows calculation of the venous-to-arterial carbon dioxide pressure difference (PCO_2 gap), which could be a good indicator of the adequacy of CO relative to the actual global metabolic conditions and could be helpful in conditions where oxygen extraction is altered while $ScvO_2$ is within the normal range. In this particular case, an abnormally high PCO_2 gap (>6 mmHg) could suggest that CO should be elevated to improve tissue oxygenation.

المكرث Thank you Merci