Fluid administration and the right ventricle

Prof. Jean-Louis TEBOUL

Medical ICU Bicetre hospital University Paris South France

Major causes of acute RV dysfunction

in critically ill patients

- Sepsis-induced myocardial dysfunction
- Acute pulmonary embolism
- RV dysfunction due to **ARDS**

ARDS-related Pulmonary Hypertension

- hypoxic vasoconstriction
- mediators-related vasoconstriction
- perivascular edema
- microthrombi in pulmonary vessels
- microvascular remodeling

Major causes of acute RV dysfunction

in critically ill patients

- Sepsis-induced myocardial dysfunction
- Acute **pulmonary embolism**
- RV dysfunction due to **ARDS**
- Deleterious effects of MV

Acute **decrease** in **contractility**

Acute **increase** in **PVR**

Major causes of acute RV dysfunction

in critically ill patients

- Sepsis-induced myocardial dysfunction
- Acute **pulmonary embolism**
- RV dysfunction due to **ARDS**
- Deleterious effects of MV

« **Structura**l » causes of RV dysfunction

« Functional » cause of RV dysfunction

What about **fluid** administration in such cases?

RV end diastolic pressure

If **RV** is **dilated**, **fluid** infusion \rightarrow **large increase** in **RV EDP**

RV end diastolic volume

If **RV** is **dilated**, **fluid** infusion \rightarrow **no increase** in **RV stroke volume**

If **RV** is **dilated**, **fluid** infusion → **large increase** in **RV EDP**

Ventricular interdependence → decrease in LV stroke volume

Fluid infusion not only does not increase but can even decrease CO

Major causes of acute RV dysfunction

in critically ill patients

- Sepsis-induced myocardial dysfunction
- Acute pulmonary embolism
- RV dysfunction due to **ARDS**
- Deleterious effects of MV

« **Structura**l » causes of RV dysfunction

« Functional » cause of RV dysfunction

What about **fluid** administration in such cases?

Mechanical insufflation and RV afterload

• Pulmonary vascular resistance and lung volume

extra-alveolar vessels

intra-alveolar vessels

7 Lung volume

decreases the resistance of the extra-alveolar vessels

7 Lung volume

decreases the resistance of the extra-alveolar vessels

Transpulmonary pressure = P_{alv} - P_{it}

Increases the resistance of the intra-alveolar vessels

Physiological aspects

Clinical application

> Physiological aspects

Clinical application

Intensive Care Med 2016

Armand Mekontso Dessap Florence Boissier Cyril Charron Emmanuelle Bégot Xavier Repessé Annick Legras Christian Brun-Buisson Philippe Vignon Antoine Vieillard-Baron

SEVEN-DAY PROFILE PUBLICATION

Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact

752 pts

prevalence **ACP : 22%**

11 centres

ACP defined

as RVEDA/LVEDA > 0.6

and septal dyskinesia

Intensive Care Med 2016

Armand Mekontso Dessap Florence Boissier Cyril Charron Emmanuelle Bégot Xavier Repessé Annick Legras Christian Brun-Buisson Philippe Vignon Antoine Vieillard-Baron

SEVEN-DAY PROFILE PUBLICATION

Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact

752 pts

11 centres

 Table 3 The acute cor pulmonale risk score

Parameter

Pneumonia as cause of ARDS Driving pressure $\geq 18 \text{ cmH}_2\text{O}^a$

Intensive Care Med (2009) 35:69–76

David Osman Xavier Monnet Vincent Castelain Nadia Anguel Josiane Warszawski Jean-Louis Teboul **Christian Richard**

ORIGINAL

Incidence and prognostic value of right ventricular failure in acute respiratory distress syndrome

145 ARDS patients

with lung protectiv prevalence ACP : 10%

Definition of **ACP**

mean PAP > 25 mmHg

- \bullet RAP > PAOP
- Stroke Index < 30 mL/m²

Reduction of transpulmonary pressure using ventilatory strategies aimed at limiting plateau pressure, is associated with high reduction of incidence and severity of acute cor pulmonale during ARDS

CONFERENCE REPORTS AND EXPERT PANEL

Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016

Andrew Rhodes^{1*}, Laura E. Evans², Waleed Alhazzani³, Mitchell M. Levy⁴, Massimo Antonelli⁵, Ricard Ferrer⁶,

Intensive Care Med (2017) 43:304–377

M. MECHANICAL VENTILATION

- We recommend using a target tidal volume of 6 mL/kg predicted body weight compared with 12 mL/kg in adult patients with sepsis-induced acute respiratory distress syndrome (ARDS) (strong recommendation, high quality of evidence).
- 2. We recommend using an upper limit goal for plateau pressures of 30 cm H₂O over higher plateau pressures in adult patients with sepsis-induced severe ARDS (strong recommendation, moderate quality of evidence).

Hemodynamic effects of PEEP application

In ARDS pts, PEEP generally:

- 1. Increases cardiac output
- 2. Decreases cardiac output
- 3. Exerts no effect
- 4. It depends on volemic status

single choice

Hemodynamic effects of PEEP application

In ARDS pts, PEEP generally:

1. Increases cardiac output

- 2. Decreases cardiac output
- 3. Exerts no effect
- 4. It depends on volemic status

single choice

Hemodynamic impact of a positive end-expiratory pressure setting in acute respiratory distress syndrome: Importance of the volume status*

Emilie Fougères, MD; Jean-Louis Teboul, MD, PhD; Christian Richard, MD; David Osman, MD; Denis Chemla, MD, PhD; Xavier Monnet, MD, PhD

Crit Care Med 2010; 38:802-807

Conclusion -1-

In critically ill pts, RV dilation may occur due to "structural" causes

(PE, ARDS-related PH, septic myocardial dysfunction)

Fluid infusion cannot increase CO and can even decrease CO

In patients receiving MV, **RV dilation** may also occur due to **MV itself** (high P_{TP} increasing PVR due to extension of zone 2 conditions) By increasing Pvp, **fluid** infusion can restore zone 3 conditions, thus decreasing PVR and RV size, and can **increase CO**

Conclusion -2-

In cases of any doubt, a PLR test can be helpful

essentially in **ARDS**, where « **structural** »

and « functional » causes may both exist

In any case, the **benefit/risk** ratio of **fluid** infusion must be carefully **assessed**

essentially in ARDS, where capillary permeability is altered

