

INTOXICATION AU METHANOL.

ETAT DES LIEUX EN TUNISIE ET PRINCIPES DE PRISE EN CHARGE.

METHANOL POISONING

FROM REVIEW OF LITERATURE TO PROTOCOLS

Pr Ag Hassen Ben Ghezala Pr Nozha Brahmi
Centre Mahmoud Yacoub CAMU Tunis.
Research laboratory toxicology-environment LR12SP07.
University Tunis El Manar

03 December 2021

CONFLICT OF INTEREST DISCLOSURE.

I have No conflict of Interest to report in relation to this Presentation.

American Academy of Clinical Toxicology Practice Guidelines on the Treatment of Methanol Poisoning

C TOX 2002

The American Academy of Clinical Toxicology Ad Hoc Committee on the Treatment Guidelines for Methanol Poisoning:* Donald G. Barceloux, G. Randall Bond, Edward P. Krenzelok, Hannah Cooper, and J. Allister Vale

American Academy of Clinical Toxicology, Harrisburg, Pennsylvania

Intensive Care Med (2005) 31:189–195 DOI 10.1007/s00134-004-2521-0

REVIEW

ICM 2005

Bruno Mégarbane Stephen W. Borron Frédéric J. Baud

Current recommendations for treatment of severe toxic alcohol poisonings

Recommendations for the Role of Extracorporeal Treatments in the Management of Acute Methanol Poisoning: A Systematic Review and Consensus Statement

Darren M. Roberts, PhD, FRACP^{1,2}; Christopher Yates, MD³; Bruno Megar James F. Winchester, MD⁵; Robert Maclaren, PharmD⁶; Sophie Gosselin, MD⁷; Thomas D. Nolin, PharmD, PhD^{8,9}; Valéry Lavergne, MD¹⁰; Robert S. Hoffman, MD¹¹; Marc Ghannoum, MD¹²; on behalf of the Extracorporeal Treatments in Poisoning Workgroup

Réanimation 2001 ; 10 : 426-34 © 2001 Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés S1164675601001438/SSU

MISE AU POINT

Intoxication aiguë par les glycols et alcools toxiques : diagnostic et traitement

B. Mégarbane*, N. Brahmi, F. Baud

Réanimation médicale et toxicologique, hôpital Lariboisière, 2, rue Ambroise-Paré, 75010 Paris, France

(Reçu le 31 janvier 2001 ; accepté le 30 mars 2001)

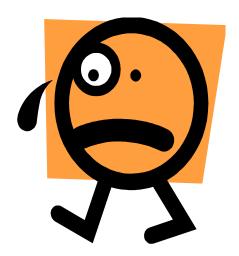
Clinical Toxicology

ISSN: 1556-3650 (Print) 1556-9519 (Online) Journal homepage: https://www.tandfonline.com/loi/ictx20

Consensus statements on the approach to patients in a methanol poisoning outbreak

Hossein Hassanian-Moghaddam, Nasim Zamani, Darren M. Roberts, Jeffrey Brent, Kenneth McMartin, Cynthia Aaron, Michael Eddleston, Paul I. Dargan, Kent Olson, Lewis Nelson, Ashish Bhalla, Philippe Hantson, Dag Jacobsen, Bruno Megarbane, Mahdi Balali-Mood, Nicholas A. Buckley, Sergey Zakharov, Raido Paasma, Bhavesh Jarwani, Amirhossein Mirafzal, Tomas Salek & Knut Erik Hovda

INTRODUCTION


- A public health problem in many countries...
- Known as "Wood Alcohol".
- Component of washing fluids, antifreeze formulations, photocopying fluids, perfumes and paint removers.
- Dermal application, inhalation or ingestion...
- Despite legislations, it exists illegally: spirits, cologne..

WHEN DO WE SUSPECT IT?

CONTEXT

Young age...

Poor / Rich conditions, Week end party...

Report of deaths...

• Clinical signs...

CLINICAL PRESENTATION (1)

- Latent period: 12-24 Hours.
- First symptoms:
- > Headache, vertigo.
- > Abdominal pain, vomiting.

Surgical emergency?

> Hyperventilation related to metabolic acidosis.

CLINICAL PRESENTATION (2)

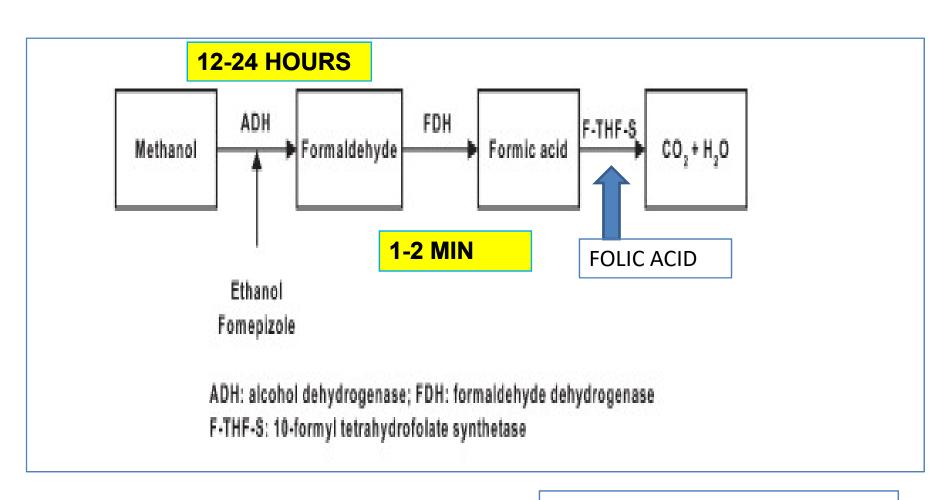
Then:

- Ocular signs (12-24 h).
- > Blurred vision.
- > Visual loss.
- > Impaired color Vision.
- > Areactive mydriasis (papillary edema)

Case series suggest that visual dysfunction occurs when formate concentrations exceed 20–30mg/dL (200–300mg/L)

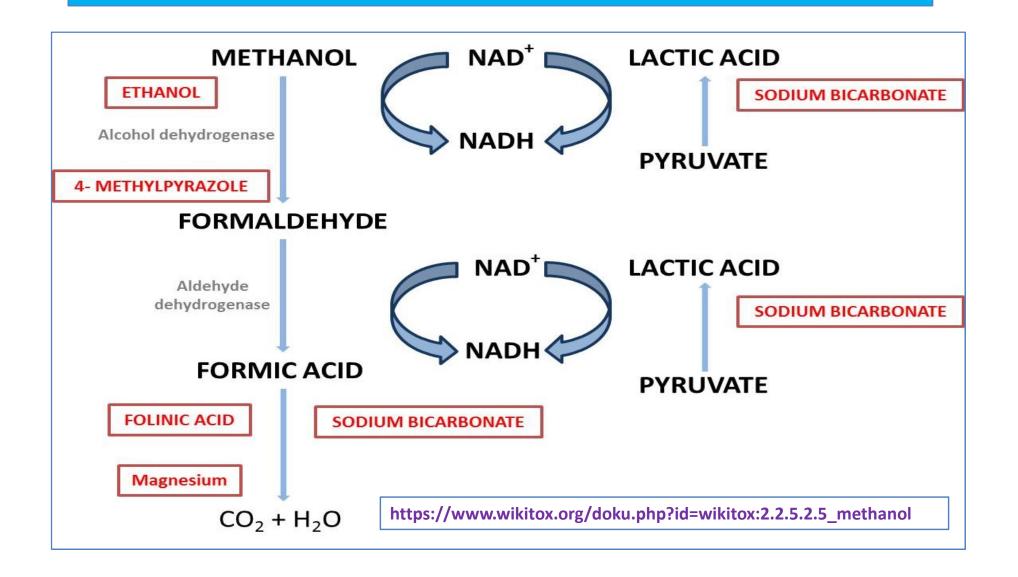
CLINICAL PRESENTATION (3)

- *Shock* (hypovolemia, myocardial depression) usually leading to death.
- Respiratory failure.
- Convulsions-Seizures. (Parkinson Like extra pyramidal syndrome).
- Renal failure (Rhabdomyolyses, Myoglobinuria).
- Pancreatitis.
- Hypomagnesemia, hypokalemia...


DIAGNOSIS (WHO 2014)

- Combination of the history, the signs and symptoms and the following laboratory findings:
- > Metabolic acidosis
- Elevated anion gap
- Elevated osmolal gap (the difference between measured and calculated osmolality)
- ➤ Positive serum methanol and/or serum formate assay.
- Serum methanol level can be estimated by multiplying the osmolar gap by 3.2. (Hovda and al.Intensive Care Med (2004))

MECHANISMS OF TOXICITY?



MECHANISMS OF TOXICITY (1)

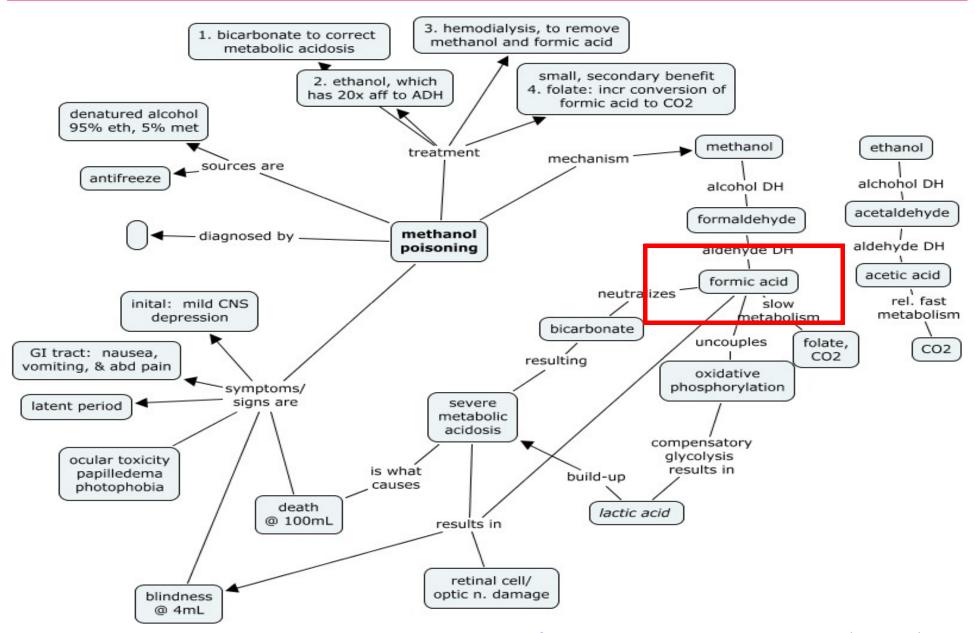
Am Academy CLIN TOX 2002

MECHANISMS OF TOXICITY (2)

MECHANISMS OF TOXICITY (3)

- Bioavailability ingestion: 100%.
- Lethal dose: 1ml/Kg.
- Factors controlling the rate of formic acid metabolism in humans:
- Presence of adequate dietary folic acid (tetrahydrofolate is derived from folic acid).
- > Efficiency with which tetrahydrofolate is regenerated during formate oxidation.

MECHANISMS (4) THE ROLE OF FORMIC ACID "THE SILENT KILLER"


- Inhibition of Cytochrome Oxidase Complex in the mitochondria "histotoxic hypoxia."
- Metabolic acidosis: Lactic acid, Formate.
- Ocular Toxicity: optic disc edema, breakdown of the myelin sheaths and optic nerve lesions.
- **Neurotoxicity:** edema and necrotic damage to the basal ganglia of the brain, **the putamen**, and hemorrhages in the subcortical white matter (Mechanism?).

Brahmi N et al Clin Tox 2007

Figure 4. Methanol poisoning in a 41-year-old man who presented with altered mental status and retrobulbar pain. Contrast material-enhanced CT scan demonstrates hypoattenuating areas in the lentiform nuclei (arrows), corpus callosum, and subcortical deep white matter in the frontal and parietooccipital regions (arrowheads). (Courtesy of Anirudh Kohli, MD, Breach Candy Hospital Trust, Mumbai, India.)

Blindness: Retinal toxicity of Methanol.

antidotes for toxic agents - methanol poisoning (ihmc.us)

Visual and neurologic sequelae of methanol poisoning in Saudi Arabia

Alberto Galvez-Ruiz, MD, Sahar M. Elkhamary, MD, Nasira Asghar, PhD, Thomas M. Bosley, MD.

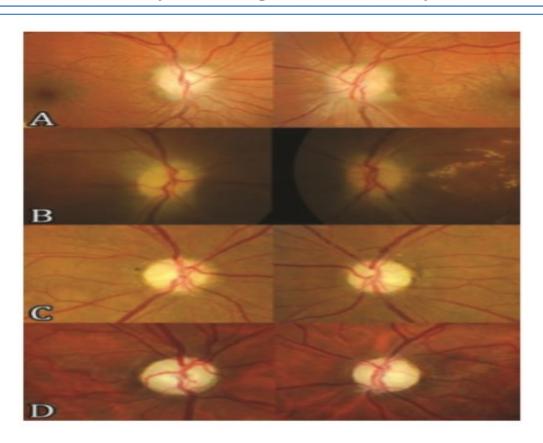


Figure 1 - Acute and chronic fundoscopic changes. Fundus images of 4 patients with the right optic disk displayed on the left side and the left optic disk displayed on the right side. Images showing the optic disks of 2 patients taken within one week of methanol exposure showing modest pallid edema of the optic disks extending onto the peripapillary retina (Figures 1A & 1B). Images depicting the optic disks of 2 different patients taken approximately 6 weeks after methanol exposure, and showing flat, moderately pale optic disks bilaterally with no residual optic disk or retinal edema (Figures 1C & 1D).

Formate-Induced Inhibition of Photoreceptor Function in Methanol Intoxication¹

MARINA T. SEME, PHYLLIS SUMMERFELT, MICHELE M. HENRY, JAY NEITZ, and JANIS T. EELLS

Departments of Pharmacology and Toxicology (M.T.S., M.M.H., J.T.E.) and Cellular Biology and Anatomy (P.S., J.N.), Medical College of Wisconsin, Milwaukee, Wisconsin

Accepted for publication December 11, 1998 This paper is available online at http://www.jpet.org

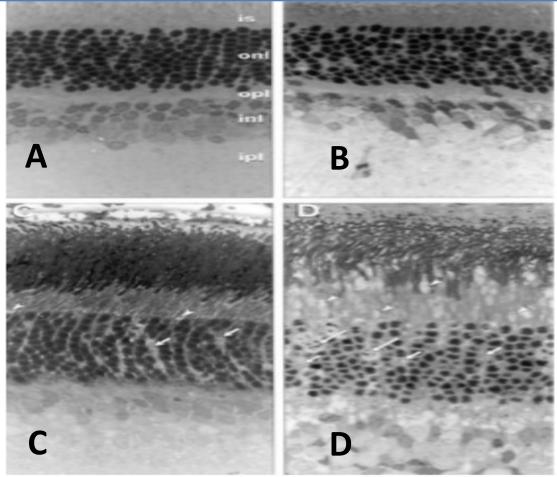


Fig. 6. Effect of methanol intoxication on retinal histology. Light micrographs of retinal tissue prepared from untreated-control rat (A) and methanol-intoxicated rats at 24 h (B), 48 h (C), and 72 h (D) after the initial dose of methanol. Sections were taken from the posterior pole of the retina within two disc diameters of the optic nerve in any direction. As rpe, retinal pigment epithelium; os, photoreceptor outer segments; is, photoreceptor inner segments; onl, outer nuclear layer; opl, outer plexiform layer; inl, inner nuclear layer; ipl, inner plexiform layer. The short arrows indicate areas of retinal edema, as evidenced by increased spacing between the nuclei in the outer nuclear layer. The arrowheads indicate enlargement and swelling of the photoreceptor inner segments, and the long arrows indicate the fragmented appearance of photoreceptor nuclei. (Toluidine blue, 450×)

REVIEW ARTICLE

Methanol Poisoning

2018

DB Kadam¹, Sonali Salvi², Ajay Chandanwale³

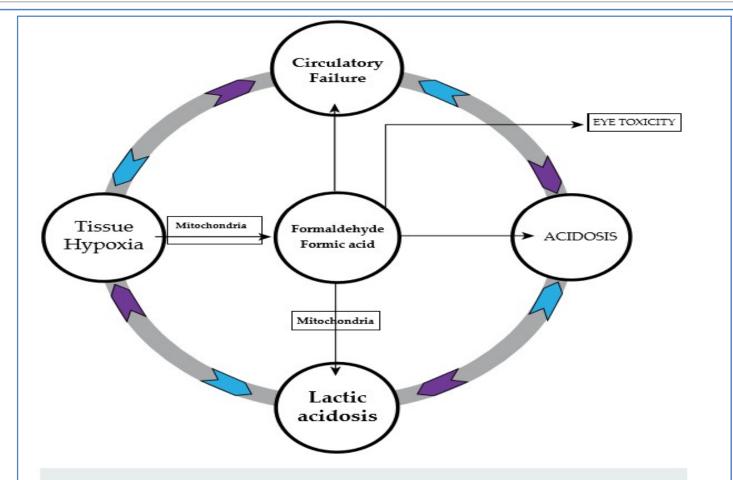
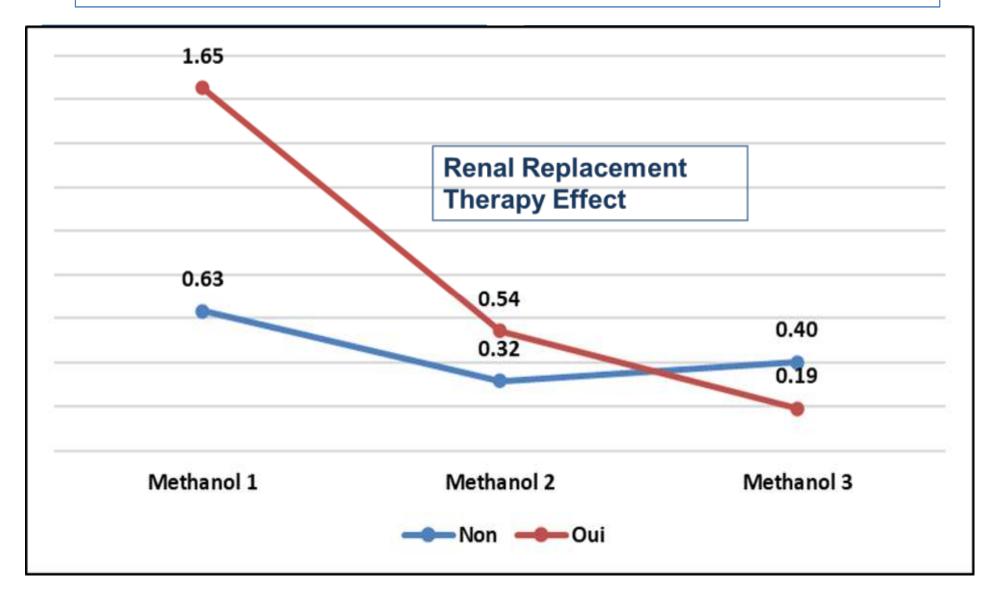



Fig. 6: Diagrammatic representation of circulus hypoxicus

CURRENT SITUATION IN TUNISIA


CENTER MAHMOUD YAACOUB TUNIS, ICU. RETROSPECTIVE STUDY (N=49).

Period	2003-2020. Two Outbreaks (2003, 2019).
Age Sex	33 +/- 16 years. Male (98%).
Methanol Level	1,34+/-1.48g/l [0 , 6,60].
Treatment	Alkalization (80%) Folic Acid (90%). Hemodialysis (n=33 (67%)). Median 6H. Ethanol (n=30 (61%)).
Outcome	Blindness (12%). Mortality: n=12 (24%).

CENTER MAHMOUD YAACOUB TUNIS, ICU. RETROSPECTIVE STUDY (N=49).

Period	2003-2020.
Neurological signs	Coma (n=13, 26%).
Brain Imaging	necrosis putamen/subcortical white matter (n=2).
Ocular Signs	Blurred Vision (n=15, 30%). Blindness (n=6, 12%).
рН	<7 (n=10, 20%). 7-7.20 (n=15, 30%). 7.20-7.38 (n=18, 37%).
Correlations	Correlation Glasgow- pH(p<0.001).


Outcome Patients included: N=49

OUTCOME (UNIVARIATE ANALYSIS). PATIENTS INCLUDED: N=49

Age	0.006
Glasgow Coma Scale (GCS)	0.016
Mydriasis	<0.05
Methanol Level	<0.001
Acute Kidney Injury	<0.05
Metabolic acidosis	<0.001
Anion Gap> 16	0.08

MANAGEMENT PRINCIPLES OF METHANOL POISONING?

BASICS

- > Alkalization: 400 à 600 mmol/24 h
- > Intubation/ mechanical ventilation.
- > Anticonvulsants.
- > Fluids/ Inotropes.

Antidotes:

☐ Ethanol PO or IV: Loading dose 0.6g/kg

Maintenance dose: 66 -154 mg/kg/h

(Objective: Ethanolemia 1 g/l)

4 Methyl-pyrazole (Fomepizole): Loading dose 10 to 15mg/kg (30min) then 10mg/kg every 12 hours till complete methanol clearance.

WHAT ELSE?

□ Folic Acid: (Oxydation cofactor of formic acid 50 mg IV, every 6 hours.

□RRT: Hemodialysis+++(Visual Disturbance, Renal failure).

□No indication for Gastric Lavage or activated charcoal.

AMERICAN GUIDELINES 2002

Proposed Indications for the Treatment of Methanol Poisoning with Ethanol or Fomepizole

Criteria

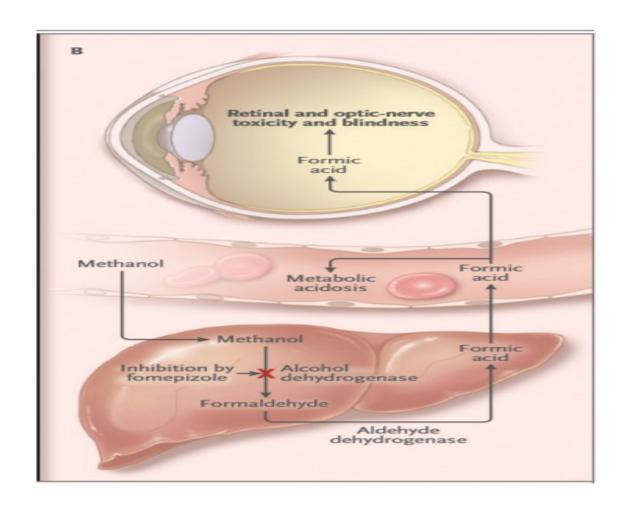
Documented plasma methanol concentration > 20 mg/dL (> 200 mg/L)^[53]

Or

Documented recent history of ingesting toxic amounts of methanol and osmolal gap > 10 mOsm/kg H₂O^a

Or

History or strong clinical suspicion of methanol poisoning and at least two of the following criteria:


- (A) Arterial pH < 7.3
- (B) Serum bicarbonate < 20 meq/L(mmol/L)
- (C) Osmolal gap $> 10 \text{ mOsm/kg H}_2\text{O}^a$

^aLaboratory analysis by freezing point depression method only.

CLINICAL THERAPEUTICS

Fomepizole for Ethylene Glycol and Methanol Poisoning

Jeffrey Brent, M.D., Ph.D.

Bruno Mégarbane Stephen W. Borron Frédéric J. Baud

Current recommendations for treatment of severe toxic alcohol poisonings

INDICATIONS OF RENAL REPLACEMENT THERAPY

Methanol poisoning:

Initial arterial pH $< 7.10^9$ or 7.25-7.30 [16]

Drop in arterial pH >0.05 resulting in a pH outside the normal range despite bicarbonate infusion Inability to maintain arterial pH >7.3 despite bicarbonate therapy

Decrease in bicarbonate concentration >5 mmol/l, despite bicarbonate therapy

Visual impairment

Renal failure

Deteriorating vital signs despite intensive supportive care

Initial plasma methanol concentration ≥ 0.5 g/l (15.6 mmol/l)^a

Rate of methanol decline <0.1 g/l (3.1 mmol/l) per 24 h

^a The recommendation for routine hemodialysis on the basis of serum concentrations alone has been recently called into question

Recommendations for the Role of Extracorporeal Treatments in the Management of Acute Methanol Poisoning: A Systematic Review and Consensus Statement

2015

Darren M. Roberts, PhD, FRACP^{1,2}; Christopher Yates, MD³; Bruno Megarbane, MD⁴; James F. Winchester, MD⁶; Robert Maclaren, PharmD⁶; Sophie Gosselin, MD⁷; Thomas D. Nolin, PharmD, PhD^{8,9}; Valéry Lavergne, MD¹⁰; Robert S. Hoffman, MD¹¹; Marc Ghannoum, MD¹²; on behalf of the Extracorporeal Treatments in Poisoning Workgroup

TABLE 3. Role of Extracorporeal Treatment in the Treatment of a Patient With Methanol Poisoning

We recommend ECTR is initiated in the following circumstances:


- 1) Severe methanol poisoning (grade 1D), including any of:
 - a) Coma (grade 1D)
 - b) Seizures (grade 1D)
 - c) New vision deficits (grade 1D)
 - d) Metabolic acidosis from methanol poisoning
 - i) Blood pH \leq 7.15 (grade 1D)
 - ii) Persistent metabolic acidosis despite adequate supportive measures and antidotes (grade 1D)
 - e) Serum anion gap > 24 mmol/L (grade 1D); calculated by serum [Na+] [Cl-] [Hco₃-].
- 2) Serum methanol concentration
 - a) > 700 mg/L or 21.8 mmol/L in the context of fomepizole therapy (grade 1D)
 - b) > 600 mg/L or 18.7 mmol/L in the context of ethanol treatment (grade 1D)
 - c) > 500 mg/L or 15.6 mmol/L in the absence of an ADH blocker (grade 1D)
 - d) In the absence of a methanol concentration, the osmolal/osmolar gap may be informative (grade 1D)
- 3) In context of impaired kidney function (grade 1D)

To optimize the outcomes from ECTR, we recommend:

- 4) Intermittent hemodialysis is the modality of choice in methanol poisoning (grade 1D). Continuous modalities are acceptable alternatives if intermittent hemodialysis is not available (grade 1D).
- b) ADH inhibitors are to be continued during ECTR for methanol poisoning (grade TD) as well as folic acid
- 6) ECTR can be terminated when the methanol concentration is < 200 mg/L or 6.2 mmol/L and a clinical improvement is observed (grade 1D)

ECTD - overscorporoal treatment ADH - alcohol debudrageness

WHAT ARE THE PROGNOSIS FACTORS?



20 YEARS AGO...

Poor prognostic indicators include :

- ➤ Serum formate concentrations >50mg/dL (>500mg/L).
- **>** pH < 7.0.
- > Coma Or Seizures on admission to the ED.

Liu J.J. and col. Prognostic Factors in Patients with Methanol Poisoning.
J. Toxicol. Clin. Toxicol. 1998.

Clinical Toxicology

SSN: 1556-3650 (Print) 1556-9519 (Online) Journal homepage: https://www.tandfonline.com/loi/ictx20

Methanol poisoning in Tunisia: Report of 16 cases

Nozha Brahmi M.D., Youssef Blel M.D., Nour Abidi M.D., Nadia Kouraichi M.D., Hafedh Thabet M.D., Abderrazek Hedhili & Mouldi Amamou M.D.

To cite this article: Nozha Brahmi M.D., Youssef Blel M.D., Nour Abidi M.D., Nadia Kouraichi M.D., Hafedh Thabet M.D., Abderrazek Hedhili & Mouldi Amamou M.D. (2007)

Case	Sex/Age	SAPS II	APACHE II	Latent period (h)	Medical delay (h)	Symptoms	Ingested quantity (mL)	MeOH serum Level (g/L)	pH	HCO ₃ · (mmol/L)	Outcome
1	M/16	14	8	8	26	Vertigo, headache, GI, VI	200	0.9	7.32	18	Survivor
2	M/17	12	8	6	36	Drowsiness, vertigo, GI	300	3.62	7.17	7	Survivor
3	M/24	12	9	4	6	Vertigo, VI, GI	500	3.56	7.14	7	Survivor
4	M/23	12	6	11	45	Headache, GI, VI	200	0.76	7.25	7.5	Survivor
5	M/29	84	36	7-	36	Coma, BV, GI, shock	200	1.4	6.80	3.3	Died
6	M/20	14	8	7	12	Drowsiness, BV, GI	300	3.6	7.16	4	Survivor
7	M/20	81	35	-	30	Coma, BV, shock		2.5	6.99	6.9	Died
8	F/53	14	7	7 <u>-</u>	40	Vertigo, headache, VI	1000	1.3	7.42	22	Survivor
9	M/27	78	30		48	Coma, shock, BV, GI	1000	1.9	6.61	4	Died
10	M/23	11	6	-	36	Vertigo, blindness, chest tightness	300	1.9	7.19	15	Survivor
11	M/21	14	8	18	36	Nausea, dyschrom atopsia	100	1.15	7.28	10	Survivor
12	M/17	12	8	_	36	None	70	0.24	7.34	15	Survivor
13	M/23	10	3		36	Vertigo, bradycrdia	30	3.56	7.14	7	Survivor
14	M/19	20	10	_	48	None	150	1.3	7.18	10.2	Survivor
15	M/21	12	7	18	36	Nausea, vomiting	80	0.19	7.35	16.8	Survivor
16	M/22	16	9	24	36	Nausea	100	1.6	7.26	10	Survivor

GI: gastrointestinal signs; VI: visual impairment; BV: blurred vision.

Clinical

Clinical Toxicology

ISSN: 1556-3650 (Print) 1556-9519 (Online) Journal homepage: https://www.tandfonline.com/loi/ictx20

Methanol poisoning in Tunisia: Report of 16 cases

Nozha Brahmi M.D., Youssef Blel M.D., Nour Abidi M.D., Nadia Kouraichi M.D., Hafedh Thabet M.D., Abderrazek Hedhili & Mouldi Amamou M.D.

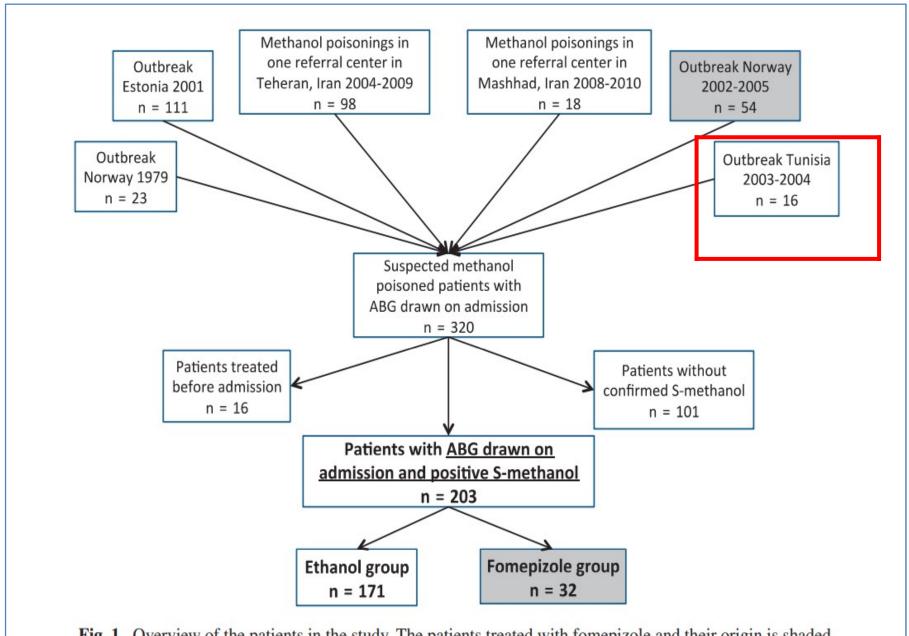
To cite this article: Nozha Brahmi M.D., Youssef Blel M.D., Nour Abidi M.D., Nadia Kouraichi M.D., Hafedh Thabet M.D., Abderrazek Hedhili & Mouldi Amamou M.D. (2007)

Table 2. Risk factors of visual disturbances

Risk factors	Presence of visual disturbances (n = 11)	Absence of visual disturbances (n = 5)	P
Latent period (h)	9.2 ± 5.5	16.6 ± 8.08	0.04
Recovery time (h)	32 ± 13.5	36 ± 6.9	NS
Ingested quantity of methanol (g)	462 ± 350	105 ± 60	0.0001
GCS	11.2 ± 5.7	14.8 ± 0.4	NS
SBP	12.1 ± 4.1	12.5 ± 1.2	NS
рН	7.10 ± 0.2	7.30 ± 0.07	0.04
HCO (mmol/L)	X7±5 X	14±37	NIS
Methanol serum level (g/L)	2.2 ± 1.1	0.84 ± 0.62	0.01
Urea (mmol/L)	6.6±3.7	5.45 ± 1.8	NS

GCS: Glasgow Coma Scale; SBP: systolic blood pressure.

Clinical Toxicology (2012), Early Online: 1–9 Copyright © 2012 Informa Healthcare USA, Inc.


ISSN: 1556-3650 print / 1556-9519 online DOI: 10.3109/15563650.2012.728224

RESEARCH ARTICLE

Risk factors related to poor outcome after methanol poisoning and the relation between outcome and antidotes – a multicenter study

RAIDO PAASMA,¹ KNUT ERIK HOVDA,² HOSSEIN HASSANIAN-MOGHADDAM,³ NOZHA BRAHMI,⁴ REZA AFSHARI,⁵ LEIV SANDVIK^{6,7} and DAG JACOBSEN⁸

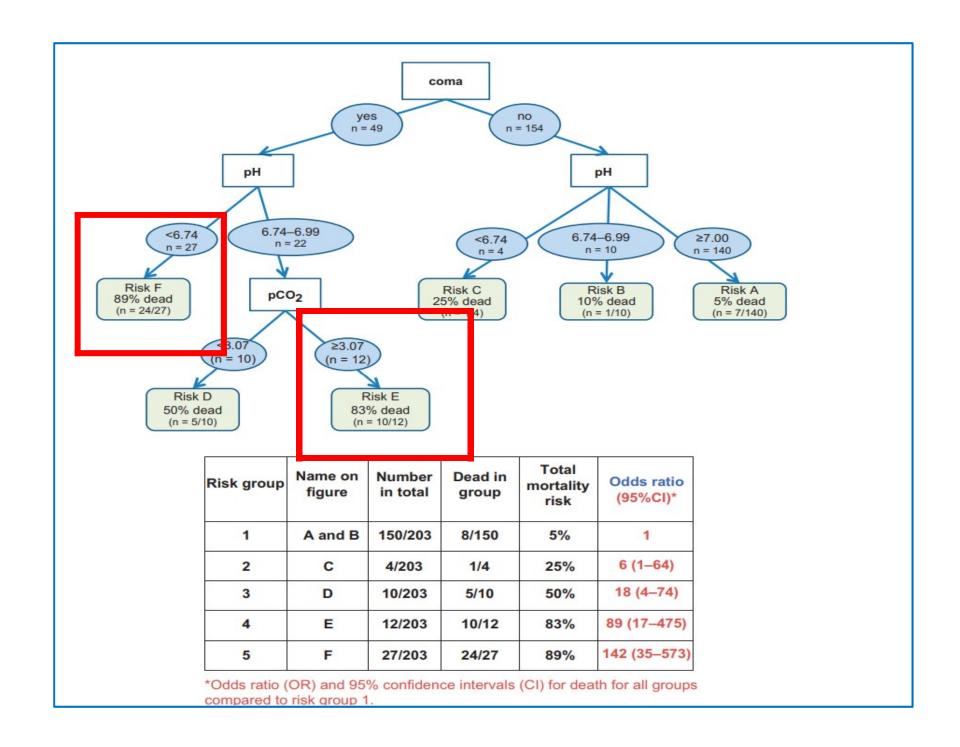


Fig. 1. Overview of the patients in the study. The patients treated with fomepizole and their origin is shaded.

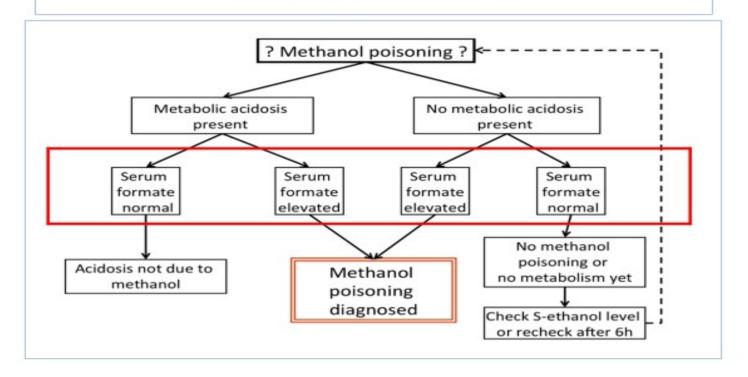
Table 2. The results of the multivariate analysis on the factors associated with a poor outcome.

Independent variable	OR	p-value	
Coma yes vs. no	10.2	3.3–32.0	p < 0.001
pH 0.1 unit increase	0.58	0.46–0.75	p < 0.001

Clinical interpretation: If the pH is increased by 0.1 units, the odds for poor outcome is reduced by 42%.

RESEARCH ARTICLE

The Methanol Poisoning Outbreaks in Libya 2013 and Kenya 2014


Morten Rostrup^{1,2,3}, Jeffrey K. Edwards^{4,5}, Mohamed Abukalish⁶, Masoud Ezzabi⁷, David Some⁴, Helga Ritter⁴, Tom Menge⁸, Ahmed Abdelrahman⁹, Rebecca Rootwelt¹, Bart Janssens¹⁰, Kyrre Lind¹¹, Raido Paasma¹², Knut Erik Hovda^{11,13}*

1 Department of Acute Medicine, Oslo University Hospital, Oslo, Norway, 2 Médecins Sans Frontières International, Geneva, Switzerland, 3 Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway, 4 Médecins Sans Frontières, Nairobi, Kenya, 5 Department of International Health, School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America, 6 Libyan Emergency Medicine Association, Tripoli Medical Center, Tripoli, Libya, 7 Medical Department, Tripoli Central Hospital, Tripoli, Libya, 8 Department of Pharmacy, Kenyatta National Hospital, Nairobi, Kenya, 9 Médecins Sans Frontières, Libya Mission, Tripoli, Libya, 10 Médecins Sans Frontières Portières Operational Centre, Brussels, Belgium, 11 Médecins Sans Frontières, Oslo, Norway, 12 Department of Anesthesiology and ICU, Părnu County Hospital, Părnu, Estonia, 13 The Norwegian CBRNe Centre of Medicine, Department of Acute Medicine, Oslo University Hospital, Oslo, Norway

* knuterikhovda@gmail.com

CrossMark

Algorithm 2016...

COVID-19 pandemic and methanol poisoning outbreak in Iranian children and adolescents: A data linkage study

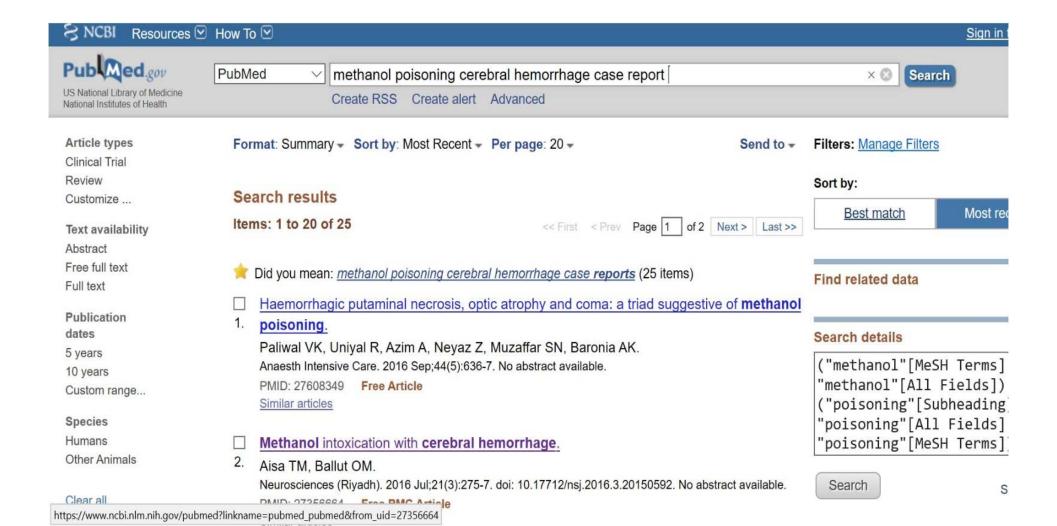
Seyed Amirhosein Mahdavi¹ | Ali-Asghar Kolahi² |

Maryam Akhgari¹ | Farzad Gheshlaghi³ | Narges Gholami⁴ |

Archives of Toxicology (2020) 94:2259–2260 https://doi.org/10.1007/s00204-020-02795-2

LETTER TO THE EDITOR, NEWS AND VIEWS

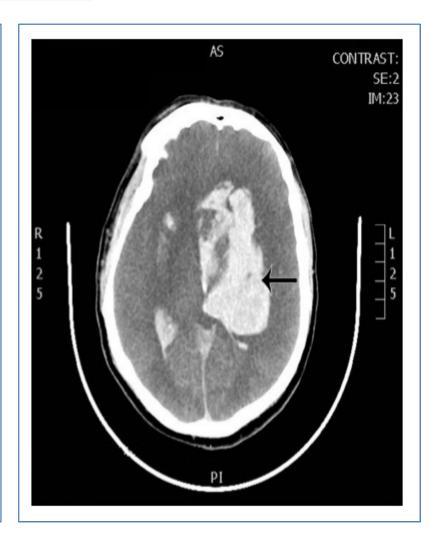
Toll of acute methanol poisoning for preventing COVID-19


Omid Mehrpour^{1,2} · Mahmood Sadeghi²

Received: 24 April 2020 / Accepted: 20 May 2020 / Published online: 27 May 2020

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

CASE REPORTS



Methanol intoxication with cerebral hemorrhage

Tharwat M. Aisa, MD, EDIC, Omar M. Ballut, MBBS, FRCP (Edin) Neurosciences 2016

Cerebral Haemorrhage in methanol poisoning...

- ➤ The precise mechanism of necrosis and haemorrhage remains a matter of debate...
- ➤ It could be due to the direct toxic effect of methanol and its metabolite "formic acid" or secondary to anoxia and acidosis.
- Some authors suggested the mechanism of ischemia reperfusion injury causing haemorrhage in necrotic areas of the brain...?
- ➤ Heparinization during HD?

American Journal of Emergency & Critical Care Medicine

Case Report

Severe Intracerebral Hemorrhage and Decompressive Craniectomy in a Case of Severe Methanol Intoxication - 8 Nov 2020

Hassen Ben Ghezala^{1*}, Eslam E Abdelshafey², Mohammad F<mark>awzy³, Mohammad Ahmed Rashwan³, Ibrahim Khalid Abdulal³ and Ashraf Shamekh Al Tayar⁴</mark>

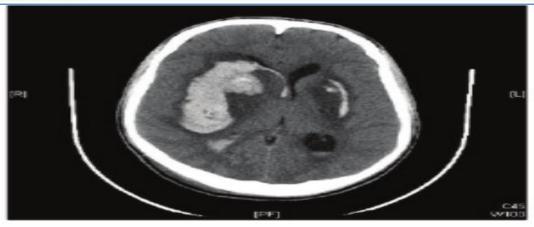


Figure 3: Follow up CT brain on day 4: Bilateral hemorrhagic transformation more on right side with mass effect.

Figure 4: Per-operative intra-cerebral hematoma evacuation.

REVIEW ARTICLE

Methanol Poisoning

DB Kadam¹, Sonali Salvi², Ajay Chandanwale³

Suspected or confirmed Methanol Poisoning case

History of ingestion of Toxic Dose of Methanol

Arterial pH <7.3

S. bicarbonate <20 mEq/L.

Osmol gap >10 mOsm/kgH2O

Fundoscopy - papillitis (red disk)

- 1. Intravenous sodium bicarbonate
- 1 ml/kg of five-fold diluted alcohol 96 as loading dose and 0.16 ml/kg/h as maintenance dose orally or by Nasogastric Tube
- Folic Acid or Folinic Acid 1 mg/kg every 4-6 hours, IV in D5W over 30-60 minutes

pH < 7.3

Clinical deterioration

Hypotension

Renal failure

Resistant dyselectrolytemia

Loss of consciousness

S. methanol >50 mg/dL

Hemodialysis

PREVENTION

- Public Education.
- Public/Government Health Problem...
- Control of false Information and rumors (COVID 19...)..
- Policies and Procedures....
- Labelling and Packaging (Article 17
 European Chemical Agency Guidance).
- Legislative Control. ...Addiction..

Loi 92-52 18/05/1992 relative aux stupefiants.

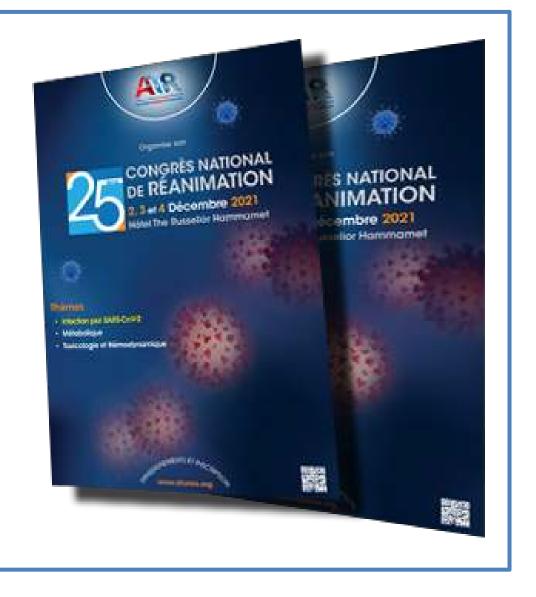
Take Home Messages

- √ The silent METABOLIC killer.
- ✓ Fomepizole (Ethanol) to be included in the Hospital drug formulary among antidotes....
- ✓ Fomepizole Versus Ethanol? Prospective Study...
- ✓ Renal RRT and Formic acid? Versus Antidote?
- ✓ Local Protocols.
- ✓ Public education about methanol consumption...
- ✓ Legislative control..

METHANOL KILLS DO NOT DIE FOR A DRINK.

BE WARY OF SPIRIT BASED DRINKS IN BARS, HOTELS AND SHOPS

DO NOT DIE FOR A DRINK


CHEZNYE EMMONS 1989 - 2013

* The bottle on the right has enough methanol in it to kill three grown men and was bought in Indonesia

Merci pour votre Attention

