Assessment of **fluid responsiveness**:

What's new?

Prof. Jean-Louis TEBOUL

Medical ICU Bicetre hospital University Paris-Saclay France

Conflicts of interest

- Member of the Medical Advisory Board of **Getinge**
- Lectures for Edwards LifeSciences
- Lectures for Masimo
- Lectures for **Cheetah**

- What is fluid responsiveness?
- Why to assess fluid responsiveness?
- When to assess fluid responsiveness?
- **How** to assess fluid responsiveness?

- What is fluid responsiveness?
- Why to assess fluid responsiveness?
- When to assess fluid responsiveness?
- How to assess fluid responsiveness?

Fluid responsiveness

is defined

as the capacity of the heart

to significantly increase its SV (or its CO)

in response to a volume challenge

Fluid infusion will increase LV stroke volume

only if both ventricles are preload responsive

Fluid responsiveness

equivalent to

biventricular preload responsiveness

Ventricular preload

• What is fluid responsiveness?

- Why to assess fluid responsiveness?
- When to assess fluid responsiveness?
- How to assess fluid responsiveness?

Why to assess fluid responsiveness?

- Not all patients even in shock are fluid responsive
- Fluid responsiveness is a dynamic phenomenon
- Fluid infusion in nonresponders is risky
- Fluid overload in general is harmful
- Use of **fluid responsiveness tests** is associated with **improved outcome**

Non-Responders Responders

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT Effect of a Resuscitation Strategy Targeting Peripheral Perfusion Status vs Serum Lactate Levels on 28-Day Mortality Among Patients With Septic Shock The ANDROMEDA-SHOCK Randomized Clinical Trial

Glenn Hernández, MD, PhD; Gustavo A. Ospina-Tascón, MD, PhD; Lucas Petri Damiani, MSc; Elisa Estenssoro, MD; Arnaldo Dubin, MD, PhD; Javier Hurtado, MD; Gilberto Friedman, MD, PhD; Ricardo Castro, MD, MPH; Leyla Alegría, RN, MSc; Jean-Louis Teboul, MD, PhD; Maurizio Cecconi, MD, FFICM; Giorgio Ferri, MD; Manuel Jibaja, MD; Ronald Pairumani, MD; Paula Fernández, MD; Diego Barahona, MD; Vladimir Granda-Luna, MD, PhD; Alexandre Biasi Cavalcanti, MD, PhD; Jan Bakker, MD, PhD; for the ANDROMEDA-SHOCK Investigators and the Latin America Intensive Care Network (LIVEN)

JAMA. 2019;321(7):654-664.

H₀

70%

30%

Hernandez et al. JAMA 2019

Why to assess fluid responsiveness?

- Not all patients even in shock are fluid responsive
- Fluid responsiveness is a dynamic phenomenon
- Fluid infusion in nonresponders is risky
- Fluid overload in general is harmful
- Use of **fluid responsiveness tests** is associated with **improved outcome**

H₄

Ho

Η,

Hernandez et al. JAMA 2019

 H_6

 H_8

Why to assess fluid responsiveness?

- Not all patients even in shock are fluid responsive
- Fluid responsiveness is a dynamic phenomenon
- Fluid infusion in nonresponders is risky
- Fluid overload in general is harmful
- Use of **fluid responsiveness tests** is associated with **improved outcome**

Why to assess fluid responsiveness?

- Not all patients even in shock are fluid responsive
- Fluid responsiveness is a dynamic phenomenon
- Fluid infusion in nonresponders is risky
- Fluid overload in general is harmful
- Use of fluid responsiveness tests is associated with improved outcome

Sepsis in European intensive care units: Results of the SOAP study*

Jean-Louis Vincent, MD, PhD, FCCM; Yasser Sakr, MB, BCh, MSc; Charles L. Sprung, MD; V. Marco Ranieri, MD; Konrad Reinhart, MD, PhD; Herwig Gerlach, MD, PhD; Rui Moreno, MD, PhD; Jean Carlet, MD, PhD; Jean-Roger Le Gall, MD; Didier Payen, MD; on behalf of the Sepsis Occurrence in Acutely III Patients Investigators

Crit Care Med 2006; 34:344-353

Table 7. Multivariate, forward stepwise logistic regression analysis in sepsis patients (n = 1177), with intensive care unit mortality as the dependent factor

	OR (95% CI)	p Value			
SAPS II score ^a (per point increase)	1.0 (1.0–1.1)	<.001			
Cumulative fluid balance ^b (per liter increase)	1.1(1.0-1.1)	.001			
Age (per year increase)	1.0(1.0-1.0)	.001			
Initial SOFA come (non point ingrospa)	11(10 11)	.002			
Blood		.004			
Cirrho Positive cumulative fluid balance					
Pseude		.017			
Medica :		.049			
Femal IS an independent factor asso	clated with mortali	τ γ .044			

Critical Care 2012, 16:R197

RESEARCH

Open Access

Fluid overload is associated with an increased risk for 90-day mortality in critically ill patients with renal replacement therapy: data from the prospective FINNAKI study

Suvi T Vaara^{1*}, Anna-Maija Korhonen¹, Kirsi-Maija Kaukonen¹, Sara Nisula¹, Outi Inkinen², Sanna Hoppu³, Jouko J Laurila⁴, Leena Mildh¹, Matti Reinikainen⁵, Vesa Lund⁶, Ilkka Parviainen⁷ and Ville Pettilä^{1,8}, for The FINNAKI study group

Patients with RRT: higher 90-day mortality

in the fluid overload group

Fluid resuscitation in septic shock: A positive fluid balance and elevated central venous pressure are associated with increased mortality*

John H. Boyd, MD, FRCP(C); Jason Forbes, MD; Taka-aki Nakada, MD, PhD; Keith R. Walley, MD, FRCP(C); James A. Russell, MD, FRCP(C)

Crit Care Med 2011; 39:259-65

- A retrospective review of the VASST data
- Use of fluids during the first 4 days
- 778 patients with septic shock
- Quartiles 1-4: dry to wet

Patients with septic shock: patients with cumulative positive

fluid balance at H₁₂ and at Day₄ had decreased survival

Extravascular Lung Water is an Independent Prognostic Factor in Patients with Acute Respiratory Distress Syndrome*

Mathieu Jozwiak, MD; Serena Silva, MD; Romain Persichini, MD; Nadia Anguel, MD; David Osman, MD; Christian Richard, MD; Jean-Louis Teboul, MD, PhD; Xavier Monnet, MD, PhD

Crit Care Med 2013; 41:472-480

200 pts	D ₂₈ mortality: 54%	
	Odds Ratio (Cl 95%)	p value
Maximal blood lactate	1.29 (1.14 - 1.46)	0.0001
Mean PEEP	0.78 (0.67 – 0.91)	0.002
Minimal PaO_2 / FiO_2	0.98 (0.97 - 0.99)	0.006
SAPS II	1.03 (1.01 - 1.05)	0.02
EVLW _{max}	1.07 (1.02 - 1.12)	0.007
Mean fluid balance	1.0004 (1.0001 - 1.0008)	0.02

Why to assess fluid responsiveness?

- Not all patients even in shock are fluid responsive
- Fluid responsiveness is a dynamic phenomenon
- Fluid infusion in nonresponders is risky
- Fluid overload in general is harmful
- Use of **fluid responsiveness tests** is associated with **improved outcome**

Characteristics of resuscitation, and association between use of dynamic tests of fluid responsiveness and outcomes in septic patients: results of a multicenter prospective cohort study in Argentina

Arnaldo Dubin^{1*}, Cecilia Loudet², Vanina S. Kanoore Edul³, Javier Osatnik⁴, Fernando Ríos⁵, Daniela Vásquez⁶, Mario Pozo⁷, Bernardo Lattanzio⁸, Fernando Pálizas⁷, Francisco Klein⁹, Damián Piezny⁵, Paolo N. Rubatto Birri¹, Graciela Tuhay⁹, Analía García¹⁰, Analía Santamaría¹¹, Graciela Zakalik¹², Cecilia González¹³ and Elisa Estenssoro² on behalf of the investigators of the SATISEPSIS group

Ann. Intensive Care

(2020) 10:40

Table 4 Independent determinants of mortality according to logistic regression analysis

Variable	Odds ratio	[Cl 95%] P		
Charlson score	1.21	[1.07–1.36]	0.002	
SOFA score	1.16	[1.07-1.26]	< 0.0001	
Serum lactate	1.21	[1.08-1.37]	0.001	
Mechanical ventilation	12.2	[5.73-26.00]	< 0.0001	
Dynamic tests of fluid responsiveness	0.37	[0.21-0.67]	0.001	

Incorporating Dynamic Assessment of Fluid Responsiveness Into Goal-Directed Therapy: A Systematic Review and Meta-Analysis

Joseph M. Bednarczyk, MD, FRCPC¹; Jason A. Fridfinnson, MD²; Anand Kumar, MD, FRCPC¹; Laurie Blanchard, MLIS³; Rasheda Rabbani, PhD^{3,4}; Dean Bell, MD, FRCPC¹; Duane Funk, MD, FRCPC¹; Alexis F. Turgeon, MD, MSc, FRCPC⁵; Ahmed M. Abou-Setta, MD, PhD⁴; Ryan Zarychanski, MD, MSc, FRCPC^{1,3,4}

Crit Care Med 2017; 45:1538-1545

	Dynamic therapy	;	Control			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Kapoor 2008	0	15	0	15		Not estimable	
Goepfert 2013	0	50	0	50		Not estimable	
Kumar 2016	0	30	0	30		Not estimable	
Colantonio 2015	0	42	4	44	1.4%	0.12 [0.01, 2.10]	
Scheeren 2013	0	32	2	32	1.3%	0.20 [0.01, 4.01]	
Buettner 2009	0	40	1	40	1.1%	0.33 [0.01, 7.95]	
Parke 2015	0	70	1	74	1.1%	0.35 [0.01, 8.50]	
Lopes 2007	2	17	5	16	5.1%	0.38 [0.08, 1.67]	
Richard 2015	7	30	14	30	20%	0.50 [0.24, 1.06]	— — —
Pearse 2015	28	368	42	366	54.7%	0.66 [0.42, 1.05]	-8-
Jhanji 2010	9	90	6	45	12.1%	0.75 [0.28, 1.98]	
Mayer 2010	2	30	2	30	3.2%	1.00 [0.15, 6.64]	
Total (95% CI)		814		772	100.0%	0.59 [0.42, 0.83]	
Total events	48		77				
Heterogeneity: Tau ² = 0.00; Chi ² = 3.28, df = 8 (P = 0.92); l ² = 0%					0.01 0.1 1 10		
Test for overall e	Test for overall effect: $Z = 3.04$ (P = 0.002)					Favours [Dynamic Therapy] Favours [Control]	

Figure 2. Effect of goal-directed fluid therapy guided by dynamic assessment of fluid responsiveness on mortality.

• What is fluid responsiveness?

- Why to assess fluid responsiveness?
- When to assess fluid responsiveness?
- How to assess fluid responsiveness?

Mathieu JOZWIAK ^{1, 2}, Olfa HAMZAOUI ³, Xavier MONNET ^{1, 2}, Jean-Louis TEBOUL ^{1, 2} *

Minerva Anestesiologica 2018 August;84(8):987-92

Infuse around **10 mL/kg** crystalloids within the **first hour** Increase infusion rate if:

- . Fluid losses . Mottling or ↗ CRT
 - . Abdominal sepsis . Low PP

Mathieu JOZWIAK ^{1, 2}, Olfa HAMZAOUI ³, Xavier MONNET ^{1, 2}, Jean-Louis TEBOUL ^{1, 2} *

Minerva Anestesiologica 2018 August;84(8):987-92

Mathieu JOZWIAK ^{1, 2}, Olfa HAMZAOUI ³, Xavier MONNET ^{1, 2}, Jean-Louis TEBOUL ^{1, 2} *

Minerva Anestesiologica 2018 August;84(8):987-92

Mathieu JOZWIAK ^{1, 2}, Olfa HAMZAOUI ³, Xavier MONNET ^{1, 2}, Jean-Louis TEBOUL ^{1, 2} *

Minerva Anestesiologica 2018 August;84(8):987-92

• What is fluid responsiveness?

- Why to assess fluid responsiveness?
- When to assess fluid responsiveness?
- **How** to assess fluid responsiveness?

Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021

Laura Evans^{1*}, Andrew Rhodes², Waleed Alhazzani³, Massimo Antonelli⁴, Craig M. Coopersmith⁵, Craig French⁶, Flávia R. Machado⁷, Lauralyn Mcintyre⁸, Marlies Ostermann⁹, Hallie C. Prescott¹⁰,

Intensive Care Med

We suggest that **dynamic** measures to guide fluid resuscitation over static parameters

Dynamic indices of preload responsiveness

Intensive Care Med (2016) 42:1935–1947

ORIGINAL

Xavier Monnet Paul Marik Jean-Louis Teboul Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis

Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021

Laura Evans^{1*}, Andrew Rhodes², Waleed Alhazzani³, Massimo Antonelli⁴, Craig M. Coopersmith⁵, Craig French⁶, Flávia R. Machado⁷, Lauralyn Mcintyre⁸, Marlies Ostermann⁹, Hallie C. Prescott¹⁰,

Intensive Care Med

6. For adults with sepsis or septic shock, we suggest using **dynamic measures** to **guide fluid resuscitation**, over physical examination or static parameters alone *Weak recommendation, very low-quality evidence*

Remarks

GUIDELINES

Dynamic parameters include response to **passive leg raise** or a fluid bolus, using stroke volume (SV), stroke volume variation (SVV), pulse pressure variation (PPV), or echocardiography, where available

Dynamic indices of preload responsiveness

Arterial Pulse Pressure Variation with Mechanical Ventilation

Jean-Louis Teboul¹, Xavier Monnet¹, Denis Chemla², and Frédéric Michard³

Am J Respir Crit Care Med Vol 199, Iss 1, pp 22-31, Jan 1, 2019

Relation between Respiratory Changes in Arterial Pulse Pressure and Fluid Responsiveness in Septic Patients with Acute Circulatory Failure

FRÉDÉRIC MICHARD, SANDRINE BOUSSAT, DENIS CHEMLA, NADIA ANGUEL, ALAIN MERCAT, YVES LECARPENTIER, CHRISTIAN RICHARD, MICHAEL R. PINSKY, and JEAN-LOUIS TEBOUL

Am J Respir Crit Care Med Vol 162. pp 134–138, 2000

Applicability of pulse pressure variation: how many shades of grey?

Frederic Michard^{1*}, Denis Chemla² and Jean-Louis Teboul³

Critical Care (2015) 19:144

In some of these situations,

it has been proposed to use the changes of PPV

> during a Tidal Volume Challenge

> during Passive Leg Raising

Applicability of pulse pressure variation: how many shades of grey?

Frederic Michard^{1*}, Denis Chemla² and Jean-Louis Teboul³

Critical Care (2015) 19:144

The Changes in Pulse Pressure Variation or Stroke Volume Variation After a "Tidal Volume Challenge" Reliably Predict Fluid Responsiveness During Low Tidal Volume Ventilation*

Sheila Nainan Myatra, MD, FCCM¹; Natesh R Prabu, MD, DM¹; Jigeeshu Vasishtha Divatia, MD, FCCM¹; Xavier Monnet, MD, PhD²; Atul Prabhakar Kulkarni, MD, FICCM¹; Jean-Louis Teboul, MD, PhD²

1.0 0.8 PPV₆ 9.0 Sensitivity 0.2 0.0 0.2 0.4 0.6 0.8 1.0 0.0 1 - Specificity

Crit Care Med 2017; 45:415–421

RESEARCHOpen AccessDo changes in pulse pressure variation
and inferior vena cava distensibility
during passive leg raising and tidal volume
challenge detect preload responsiveness in case
of low tidal volume ventilation?

Temistocle Taccheri^{*}, Francesco Gavelli, Jean-Louis Teboul, Rui Shi and Xavier Monnet

Very helpful in the absence of

cardiac output monitoring

An increase in PPV during TVC is reliable

to predict fluid responsiveness

RESEARCH

Open Access

Check for updates

Tidal volume challenge to predict preload responsiveness in patients with acute respiratory distress syndrome under prone position

Rui Shi¹, Soufia Ayed¹, Francesca Moretto¹, Danila Azzolina², Nello De Vita¹, Francesco Gavelli¹, Simone Carelli¹, Arthur Pavot¹, Christopher Lai¹, Xavier Monnet¹ and Jean-Louis Teboul^{1*}

Critical Care (2022

In some of these situations,

it has been proposed to use the changes of PPV

> during a Tidal Volume Challenge

> during Passive Leg Raising

RESEARCH
Open Access

Do changes in pulse pressure variation and inferior vena cava distensibility during passive leg raising and tidal volume challenge detect preload responsiveness in case of low tidal volume ventilation?
Image: Comparison of the pressure variation of the pressure vari

Temistocle Taccheri[®], Francesco Gavelli, Jean-Louis Teboul, Rui Shi and Xavier Monnet

Very helpful in the absence of

cardiac output monitoring

An decrease in PPV during PLR is reliable

to predict fluid responsiveness

Conclusion -1-

- PLR and EEO tests mimic fluid challenge without the need of infusing any drop of fluid
- The changes in CO in response to PLR or EEO tests were shown to reliably predict fluid responsiveness in various situations
- **PPV** has the advantage of **not** requiring **CO monitoring**, but it is not interpretable as a predictor of fluid responsiveness in several situations
- An **increase** in **PPV** during a **tidal volume challenge** (in supine or prone position) or a **decrease** in **PPV** during **PLR** can be helpful to predict fluid responsiveness in patients ventilated with low tidal volume
- The major advantage of these novel tests using dynamics of PPV is to be used with a simple arterial line

Conclusion -2-

- Even in case of fluid responsiveness, it is important to assess the benefit/risk ratio of fluids before any infusion, especially in patients with associated ARDS.
 - benefit = degree of fluid responsiveness
 - risk = indices of lung tolerance (P/F ratio, EVLW, PAOP, B-lines, etc.)

Merci