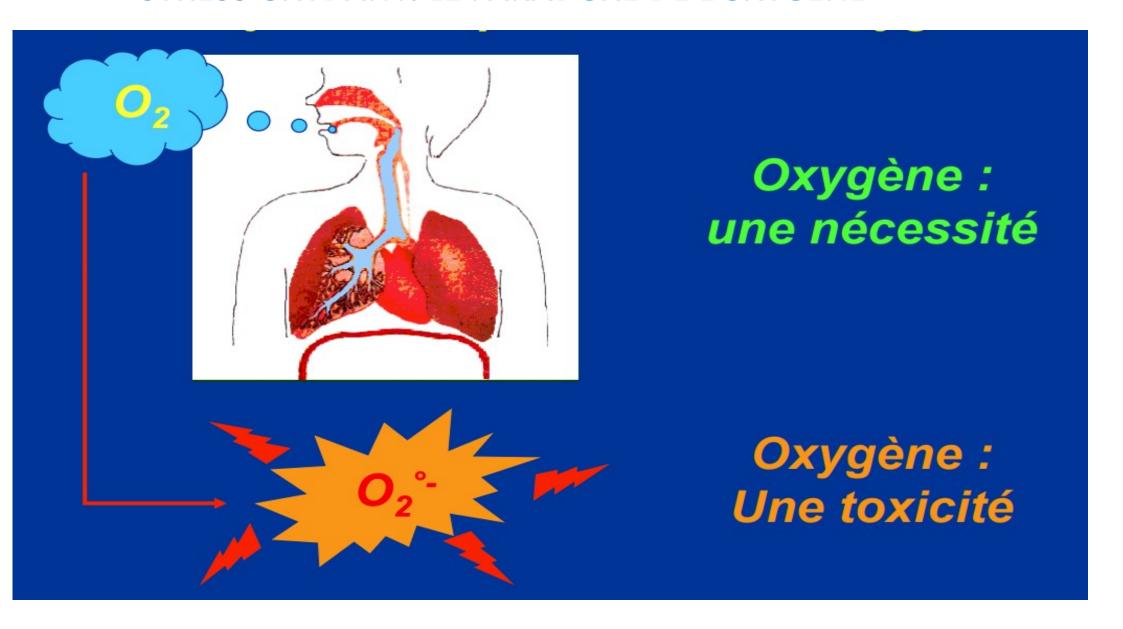
LES ANTIOXYDANTS AU COURS DU CHOC SEPTIQUE

Pr Ag AYED Samia

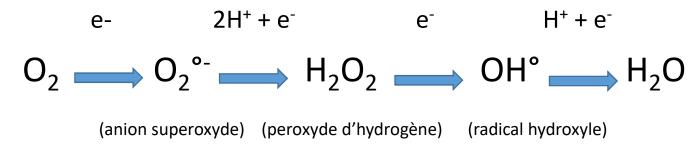

Service de Réanimation Médicale ARIANA

Congrès de l'ATR, le 19 Novembre 2022

INTRODUCTION - DEFINITIONS

- Années 50 (Gerschman et Hartman): la toxicité de l'oxygène et la «free radical theory» pour expliquer le processus de vieillissement.
- 1969: les Américains McCord et Fridovich:
 - système enzymatique antioxydant, la superoxyde dismutase (SOD), capable d'éliminer l'anion superoxyde
 - Première démonstration de la production des Espèces Oxygénées Activées (EOA)

STRESS OXYDANT: LE PARADOXE DE L'OXYGENE


- Oxygène → H₂O (chaîne respiratoire mitochondriale)
- O₂: accepteur final des électrons libérés (formation ATP)
- Réduction quasi-instantanée de l'O₂ au cours de la respiration

$$O_2 + 4 H^+ + 4 e^- \longrightarrow 2 H_2O$$

Pas d'états réduits intermédiaires

• Imperfections de la chaîne respiratoire mitochondriale

- Les électrons sont apportés un à un
- 2 à 5% de l'O2 est convertie en espèces oxygénées activées (EOA) (radicaux libres)

Intermédiaires réduits de l'oxygène

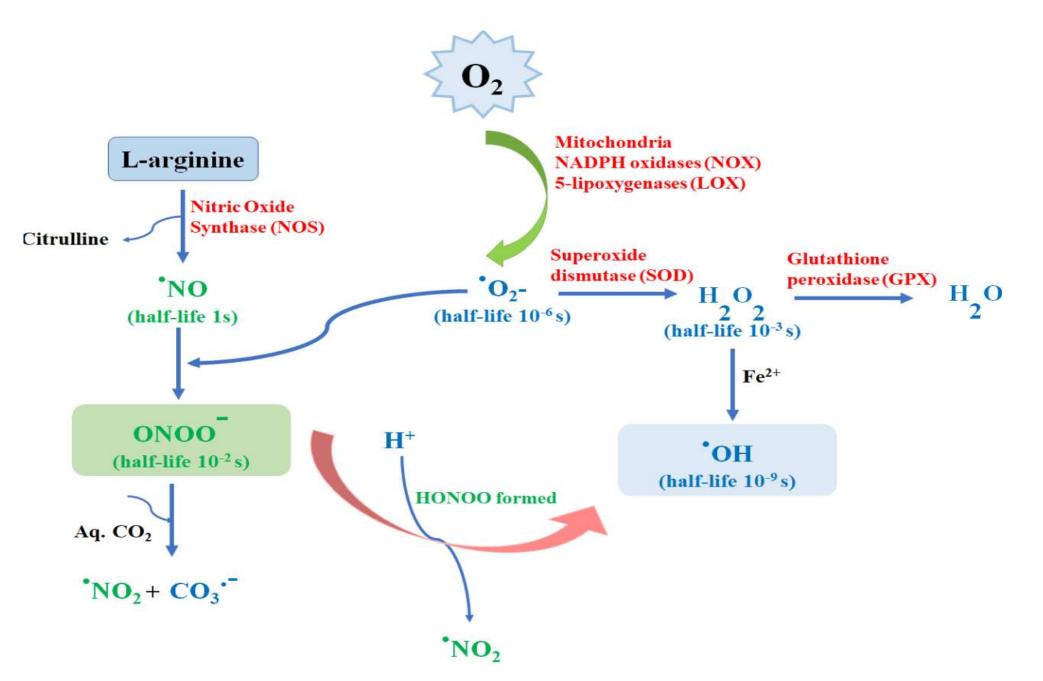
Les espèces oxygénées activées (EOA)

- Dotées de propriétés oxydantes
- Réaction avec différents substrats biologiques
 - lipides
 - protéines
 - ADN
 - glucose
- Radicaux libres (R.L)/: font partie des EOA

• EOA: Origines variées :

- R.L: dérivés de l'oxygène ou de l'azote
- EOA: requiert la présence de métaux de transition (fer, cuivre....)

Les différents radicaux:

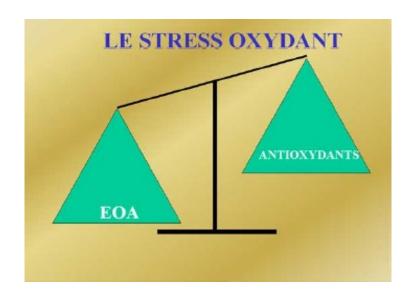

- Anion superoxyde (O₂°-)
- Radical hydroxyle (OH°)
- Monoxyde d'azote (NO°)
- Radical peroxyle (ROO°)
- Radical alkoxyle (RO°)

Radicaux libres primaires

• Dérivés oxygénés non radicalaires:

- Oxygène singulet (1 O₂)
- Peroxyde d'hydrogène (H₂O₂)
- Nitroperoxyde (ONOOH)
- Peroxynitrite (ONOO⁻)

Toxicité importante

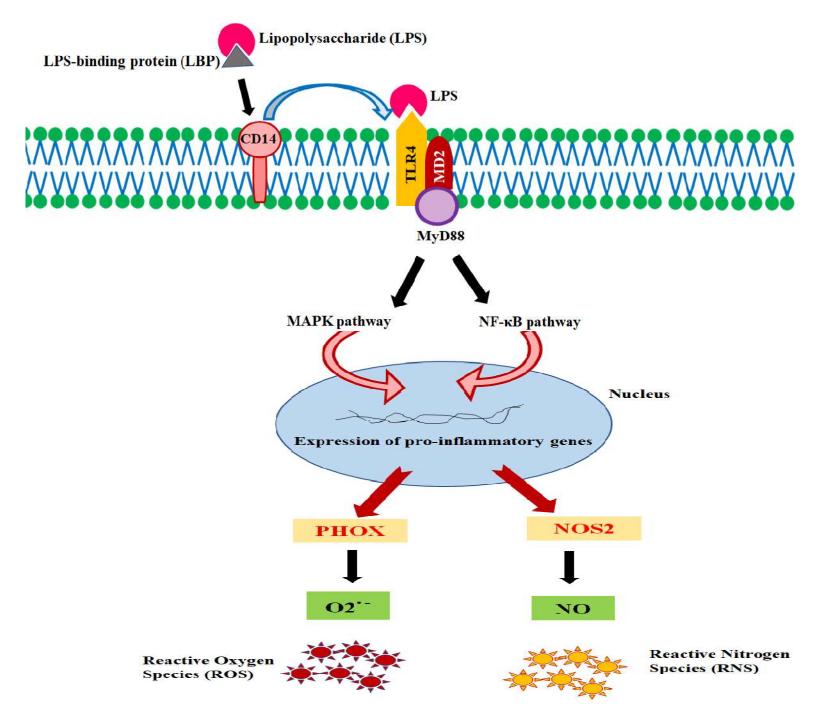


Equilibre physiologique

- Radicaux libres produits en permanence
- Systèmes de défense: antioxydants

• Le « Stress Oxydant »: rupture d'équilibre

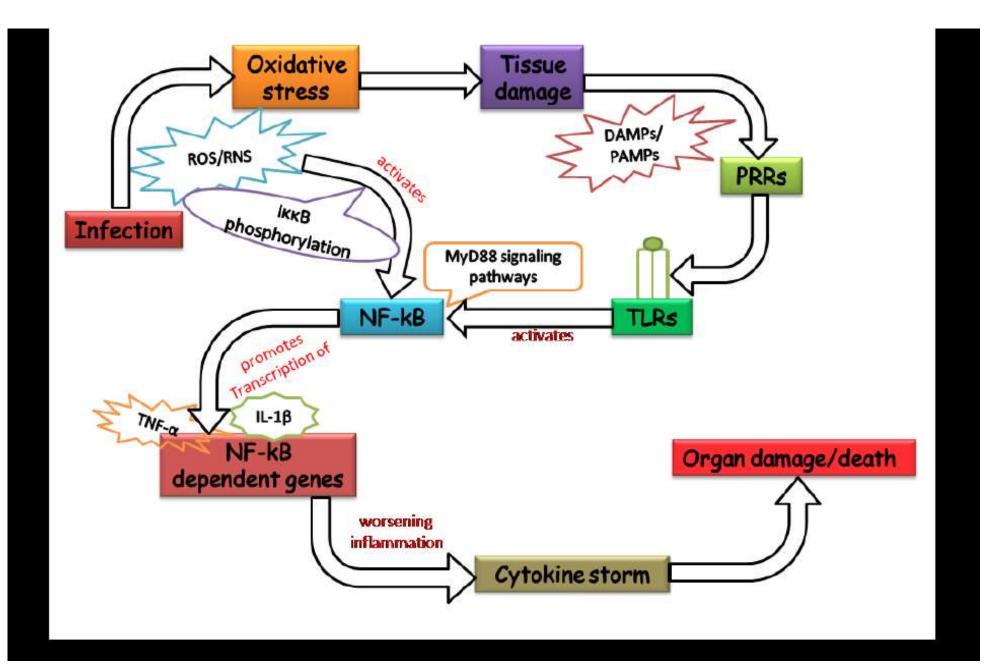
- déficit en antioxydants
- surproduction de radicaux libres
- les deux



Origines multiples :

- Intoxications aux métaux lourds (mercure, plomb, cadium)
- Irradiations (UV, rayons X...)
- Phénomènes d'ischémies/reperfusions (thromboses, exercice, sepsis)
- Carences nutritionnelles (vitamines, oligo-éléments)
- Anomalies génétiques (mauvais codage pour une protéine)

tress oxydatif au cours du choc septiqu


- Stress oxydatif: apoptose cellulaire par suractivation du gène pro-apoptotique Bax
- Rôle complexe: modulation de la réponse REDOX
- Déséquilibre: hyperactivation du processus de signalisation
 - mise en jeu d'évènements fatals pour la survie de la cellule
- EOA: seconds messagers
 - défense antibactérienne au cours des réactions de cytotoxicité face aux agents pathogènes
 - transduction de signaux cellulaires
 - régulation des gènes par un phénomène appelé contrôle redox des gènes
 - Régulation de plusieurs processus physiologiques moléculaires cellulaires et tissulaires.

.9;(3)1:R2 15305/ijir/v3i1/303

Mécanismes incriminés au cours du choc septique:

- Activation phagocytaire: activation du système enzymatique de l'oxido-génèse:
 - NADPH oxidase: production O₂
 - myeloperoxidase (macrophages): conversion H₂O₂ et Cl en HOCl et OH
- Déséquilibre du ratio SOD/CAT ratio (hyperexpression de SOD ou inhibition de CATALASE) intimement associé à une majoration du stress oxidatif et de la morbidité au cours du sepsi
- Dysoxie cytopathique: dysfonction de la chaine respiratoire mitochondriale
 - Hyperproduction de EOA
- Stimulation de l'expression de facteur tissulaire et de molécules d'adhésions cellulaires à la surface des cellules endothéliales: adhésion des leucocytes et formation de microthrombi entraînant une altération du flux microcirculatoire

- Hypovitaminose démontrée au cours du choc septique:
 - Défaut d'apport
 - Défaut d'absorption
 - Augmentation des besoins cellulaires

Rationnel du traitement antioxydant

Neutralisation d'un oxydant: (composé réducteur)

- 2 systèmes de défense:
 - Enzymatique
 - Non enzymatique

Empêcher la formation des R.L Elimination des R.L

« Réparations tissulaires et cellulaires »

Les systèmes de défense enzymatiques

- Superoxyde dismutase (SOD): élimine l'anion superoxyde par dismutation
- Catalase: élimine le peroxyde d'hydrogène (H₂O₂) par dismutation
- Glutathion peroxydase (Gpx): élimine 70% des proxydes organiques et 94% de H_2O_2 par réduction
- Thiorédoxine: maintien des protéines à l'état réduit, régénération des vitamine C et E, et régulation Redox du NFKB

• Les systèmes de défense non enzymatiques (scanvengers):

- Vitamines (C, E)
- Oligo-éléments (Se, Cu, Zn)
- Acide urique (métabolisme des purines)
- Composés à groupement thiol (-SH)

- Vitamine C: Acide ascorbique
 - Besoin journalier: 3 à 6 g/j
 - antioxydant très puissant (capte O2°- et OH°)
 - inhibition peroxydation lipidique
 - Régénération vitamine E

$$R^{\circ}$$
 + Vit C - OH \longrightarrow RH + Vit C - O $^{\circ}$

- Rôle sur la perméabilité endothéliale et la structure de l'endothélium
 - maintien des jonctions intercellulaires
 - inhibition de l'apoptose des cellules endothéliales
 - protection des précurseurs des cellules endothéliales
 - prolifération des cellules endothéliales

Crit Care 2014; 18: 460

Free Radic Res 2008; 42: 754–762

Deux « petits » essais cliniques:

- Étude de phase 1 de Fowler:
 - absence d'effet indésirable sévère chez les patients présentant un sepsis sévère traités par vitamine C à faible dose (50mg/kg/24h) ou à haute dose (200mg/kg/24h).
 - réduction du SOFA à 96h plus importante dans les groupes recevant de la vitamine C, ainsi qu'une diminution des marqueurs de l'inflammation (PCT et CRP)

J Transl Med 2014; 12: 32

- Étude de Zabet: population chirurgicale en choc septique (recevant 25mg/kg toutes les 6H de vitamine C ou un placebo):
 - Diminution de la mortalité à 28 jours, de la durée de séjour en réanimation, des doses et de la durée des vasopresseurs dans le groupe vitamine C
 - Aucun effet secondaire n'a été observé

J Res Pharm Pract 2016; 5: 94

- Étude CITRIS-ALI: population de patients ayant un SDRA associé au sepsis
 - groupe ayant eu de la vitamine C seule pendant 96h et un groupe ayant reçu un placebo
 - pas de différence sur les dysfonctions d'organes et le score SOFA à 96h
 - diminution significative de la mortalité à 28 jours et de la durée de séjour en réanimation et en hospitalisation dans le groupe vitamine C

JAMA J Am Med Assoc 2019; 322: 1261–1270

ical efficacy and safety of vitamin C in the treatment of septic ck patients: systematic review and meta-analysis

ing Cai^{1#}, Xue Lv^{2#}, Ming Lin³, Changfu Feng³, Changneng Chen³

lliat Med 2022;11(4):1369-1380 | https://dx.doi.org/10.21037/apm-22-225

13 études:

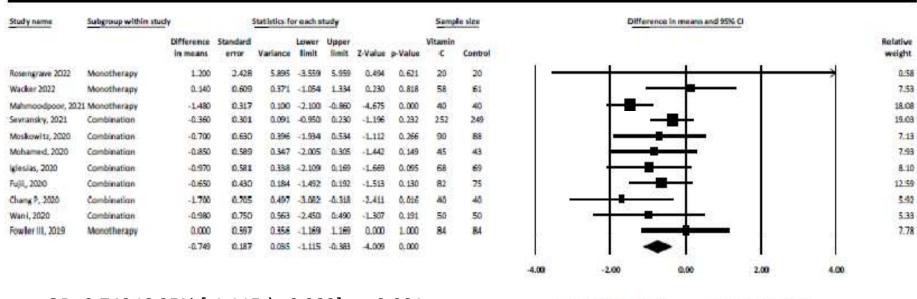
- 6 cohorte
- 7 RCT
- 1423 patients inclu

	Experimental	Group	Control (Group		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Chang P 2020	34	70	36	70	8.0%	0.94 [0.68, 1.32]	2 1. 4 2
Grady J 2019	20	44	24	44	5.3%	0.83 [0.55, 1.27]	-
Litwak JJ 2019	44	94	50	94	11.1%	0.88 [0.66, 1.17]	
Marik PE 2017	46	94	48	94	10.6%	0.96 [0.72, 1.28]	-
Mitchell AB 2020	36	76	40	76	8.8%	0.90 [0.65, 1.24]	
Mohamed ZU 2020	40	88	48	88	10.6%	0.83 [0.62, 1.12]	
Šadaka F 2020	31	62	31	62	6.9%	1.00 [0.70, 1.42]	+
Sevransky JE 2021	110	228	118	228	26.1%	0.93 [0.78, 1.12]	+
Wani SJ 2020	53	110	57	110	12.6%	0.93 [0.71, 1.21]	+
Total (95% CI)		866		866	100.0%	0.92 [0.83, 1.01]	•
Total events	414		452				
Heterogeneity: Chi ² =	1.08. df = 8 (P	= 1.00);	$I^2 = 0\%$				t t
Test for overall effect	And the second s						0.01 0.1 i 10 100 Favours [experimental] Favours [control]

Figure 3 Meta-analysis of ICU mortality rate. ICU, intensive care unit.

	Experimental	Group	Control	Group		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Fujii T 2020	65	133	68	133	17.5%	0.91 [0.56, 1.48]	2-1
Grady J 2019	10	24	14	24	4.1%	0.51 [0.16, 1.61]	(
Iglesias J 2020	38	78	40	78	10.3%	0.90 [0.48, 1.69]	
Litwak JJ 2019	27	57	30	57	8.0%	0.81 [0.39, 1.69]	
Long MT 2020	25	45	20	45	4.5%	1.56 [0.68, 3.59]	
Mitchell AB 2020	40	73	33	73	7.5%	1.47 [0.77, 2.82]	+
Sevransky JE 2021	130	274	144	274	38.2%	0.82 [0.58, 1.14]	- ■+
Wani SJ 2020	25	59	34	59	9.9%	0.54 [0.26, 1.12]	
Total (95% CI)		743		743	100.0%	0.88 [0.72, 1.08]	•
Total events	360		383				1
Heterogeneity: Chi ² =	7.06, df = 7 (P)	= 0.42)	$I^2 = 1\%$				land of the control of
Test for overall effect							'0.01 0.1 i 10 100 Favours [experimental] Favours [control]

Figure 4 Meta-analysis of ICU stay. ICU, intensive care unit.



Adv. Respir. Med. 2022, 90, 281-299. https://doi.org/10.3390/arm

Role and Efficacy of Vitamin C in Sepsis: A Systematic view and Meta-Analysis

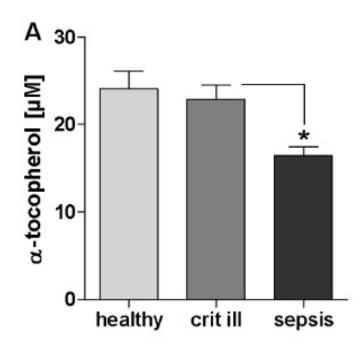
23 études2712 patient

Study name	Subgroup within study		Statis	tics for e	ach study		Death	/ Total			Odds	ratio and 9	5% CI		
		Odds ratio	Lower	Upper	Z-Value	p-Value	Vitamin C	Control							Re
Rosengrave, 2022	Monotherapy	1.000	0.273	3.667	0.000	1.000	7/20	7/20	1	1 -	_	+		- 11	f
Wacker, 2022	Monotherapy	0.531	0.249	1.135	-1.632	0.103	16/60	26 / 64		100	-	-			
v, 2021	Monotherapy	0.435	0.198	0.955	-2.074	0.038	15/61	24 / 56		_	-	_			1
Mahmoodpoor, 2021	Monotherapy	0.465	0.153	1.413	-1.350	0.177	6/40	11/40		_	_	- 100			1
ievransky, 2021	Combination	1.121	0.783	1,606	0.625	0.532	102 / 252	94 / 249		- 1		-	-		1
łusseln, 2021	Combination	0.702	0.307	1.605	0.839	0.401	17/47	21 / 47		- 1	-	-	-		1
Moskowitz, 2020	Combination	1.280	0.705	2,323	0.812	0.417	35/101	29 / 99		- 1			-		1
Mohamed, 2020	Combination	1.190	0.513	2.762	0.405	0.686	26 / 45	23 / 43		- 1					1
glesias, 2020	Combination	0.831	0.344	2.011	-0.410	0.682	11/68	13 / 69		- 1	· -	-	_		1
twang, 2020	Combination	1.240	0.549	2.800	0.517	0.606	17/53	16/58		- 1		-			1
Chang P, 2020	Combination	0.704	0.272	1.823	-0.722	0.470	11/40	14 / 40			_	-			1
iujii, 2020	Combination	1.232	0.664	2.287	0.661	0.509	30/105	25 / 102		1					1
Vani, 2020	Combination	0.812	0.332	1.989	-0.456	0.649	12/50	14/50		- 1	-	-	_		1
owler III, 2019	Monotherapy	0.491	0.259	0.929	-2.187	0.029	25 / 84	38 / 82		_ _	-+-	_			1
Viu, 2019	Monotherapy	0.515	0.299	0.888	-2.387	0.017	34/122	48 / 112		1 39					
Vabil Habib, 2017	Monotherapy	0.561	0.236	1.338	-1.303	0.193	12/50	18/50				_			
abet MH, 2016	Monotherapy	0.093	0.015	0.591	-2.516	0.012	2/14	9/14	-	-	_	- 1			1
owler III, 2014 (Low Dose)	Monotherapy	0.360	0.048	2.725	-0.989	0.323	3/8	5/8	-	-	-	-	_		
olwer III, 2014 (High dose)	Monotherapy	0.600	0.082	4,400	-0.503	0.615	4/8	5/8	(-		-	_	-0	
chneider, 2011	Combination	1.000	0.281	3.563	0.000	1.000	6/29	6/29	100			-	_		
erron-Celma, 2009	Monotherapy	2.250	0.376	13,465	0.888	0.374	6/10	4/10		- 1	_			-	-
leale, 2008	Combination	1.471	0.474	4.563	0.667	0.504	10/27	8 / 28			-	_	-	-	
ontes arruda, 2006	Combination	0.448	0.201	0.995	-1.973	0.049	18/55	25 / 48		_	-	_			1
Salley, 1997	Combination	1.650	0.370	7.365	0.656	0.512	11/16	8/14			200	_			3
8		0.778	0.635	0.954	-2.418	0.016			11	- 1	-		435	5.7	la .
									0.1	0.2	0.5	1	2	5	10

OR -0,749 IC 95% [-1,115 à -0,383]; p<0,001

Favors Vitamin C

Favors Control


SOFA Score

Vitamine E: α tocophérol

- antioxydant très puissant
- inhibition peroxydation lipidique (stoppe la propagation radicalaire: cède un e⁻)

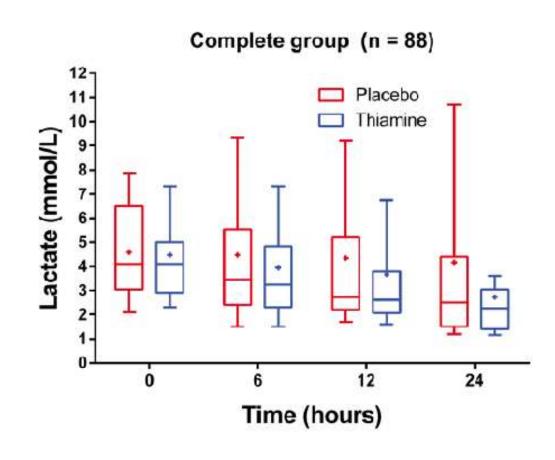
- Principal antioxydant liposoluble dans le plasma et les érythrocytes chez l'homme
- Piégeage chimique de l'oxygène singulet 1 O₂ en s'oxydant en quinone
- Réaction avec le radical hydroxyl.
- Principal rôle biologique: réagir avec les ROO° pour former le radical tocophéryle.
- α-tocophérol régénéré grâce à la vitamine C et la tocophéryl-réductase glutathior dépendante

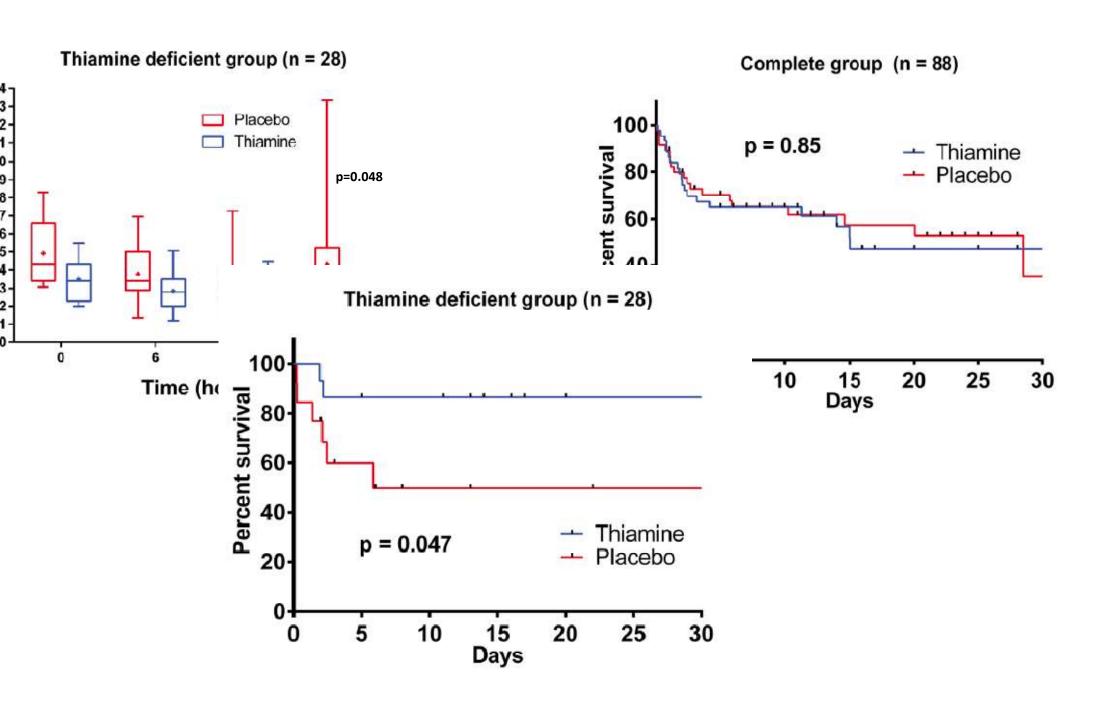
ow serum α -tocopherol and selenium are speciated with accelerated apoptosis in evere sepsis

Correlation of serum selenium and α -tocopherol with clinical scores

Score	Sele	nium	α -Tocopherol			
54	r_s	p	r_s	p		
APACHE II	-0.39	< 0.05	-0.53	< 0.01		
SOFA	-0.54	< 0.01	-0.42	< 0.05		

- Autres vitamines:
- Provitamine A (caroténoïdes) : β-carotène :
 - précurseur de la vitamine A,
 - interrompt le processus de la peroxydation lipidique.
- Vitamine P (flavonoïdes), Coenzyme Q10:
 - efficaces pour limiter la peroxydation lipidique
- Vitamine B1 (Thiamine)


ndomized, Double-Blind, Placebo-Controlled Trial of Thiamine a Metabolic Resuscitator in Septic Shock: A Pilot Study


Crit Care Med. 2016 February ; 44(2): 36

Randomisation 1:1

Groupe intervention: thiamine 200mg dans 50ml de SG5%, 2 fois /j pendant 07 jours ou jusqu'à la sortie Groupe contrôle: protocole équivalent de 50ml SG5%
Critère de jugement principal: taux de lactates 24 H après la première dose Échantillon calculé: 80 patients (RR 67%)

Déficit en Thiamine: < 7nmol/l

nbination therapy of vitamin C I thiamine for septic shock: a multi-centre, uble-blinded randomized, controlled study

on Hwang¹, Seung Mok Ryoo², Jong Eun Park¹, You Hwan Jo^{3,4}, Dong-Hyun Jang^{3,4}, Gil Joon Suh⁴, n Kim⁴, Youn-Jung Kim², Seonwoo Kim³, Hyun Cho⁵, Ik Joon Jo¹, Sung Phil Chung⁶, Sung-Hyuk Choi⁷, n Shin^{1*}, Won Young Kim^{2*} and Korean Shock Society (KoSS)

Essai ATESS: étude multicentrique coréenne, contrôlée, randomisée, en double aveugle, incluant 111 patients

Deux groupes

- Groupe 1: traité par vitamine C, hémisuccinate d'hydrocortisone et vitamine B1
- Groupe 2: placebo

Pas de différence significative dans le delta score SOFA entre J1 et J3,

Pas de différence significative en termes de mortalité ou de dysfonction d'organes

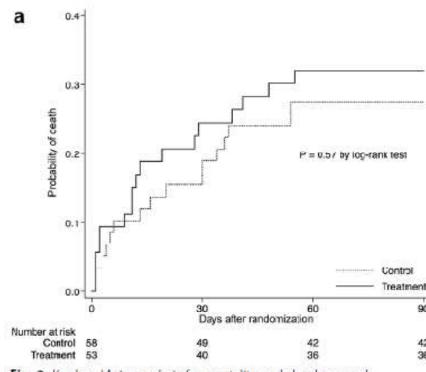
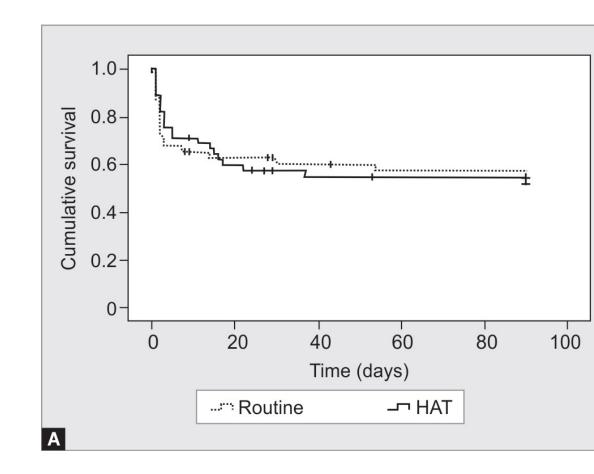


Fig. 3 Kaplan-Meier analysis for mortality and shock reversal

ct of Vitamin C, Hydrocortisone, and Thiamine vs Hydrocortisone Alone on Time Alive Free of Vasopressor Support Among Patients With Septic Shock: The VITAMINS domized Clinical Trial

A. 2020;323(5):423-431. doi:10.1001/jama.2019.22176


Fujii T, Luethi N, Young PJ, et al. Effect of vitamin C, hydrocortisone, and thiamine vs hydrocortisone alone on time alive and free of vasopressor support among patients with septic shock: the VITAMINS randomized clinical trial [published online January 17, 2020]. JAMA. doi:10.1001/jama.2019.22176

min C Therapy for Routine Care in Septic Shock CTOR) Trial: Effect of Intravenous Vitamin C, Thiamine, Hydrocortisone Administration on Inpatient Mortality ong Patients with Septic Shock

Étude monocentrique, randomisée contrôlée, menée en Inde

- Groupe intervention (n=45): vit C
 (1,5 g/6h) + thiamine (200mg/12h)
 + HSHC (50mg/6h) dans les 6
 heures d'admission pour choc
 septique, pendant 96 heures
- Groupe contrôle (n=43): traitement standard, administration HSHC ou thiamine autorisée si besoin

Critère de jugement principal: mortalité en réanimation

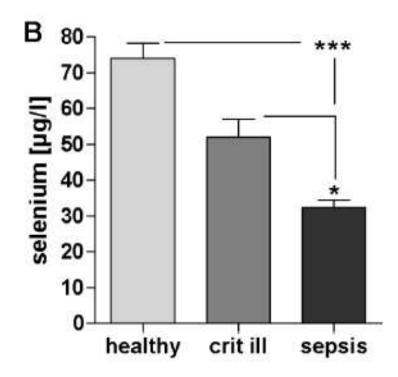
150

155

A | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

ect of Vitamin C, Thiamine, and Hydrocortisone Ventilator- and Vasopressor-Free Days in Patients With Sepsis VICTAS Randomized Clinical Trial

Essai Américain multicentrique contrôlé randomisé en double aveugle Groupe intervention (n=252): vit C 1,5g + thiamine 100mg + HSHC 50mg toutes les 6 heures pendant 96 heures Groupe placebo (n=249) Critère de jugement principal: nombre de jours sans VMI et sans drogues vasoactives à J30 Critère de jugement secondaire: mortalité à J30 Essai interrompu pour causes administratives

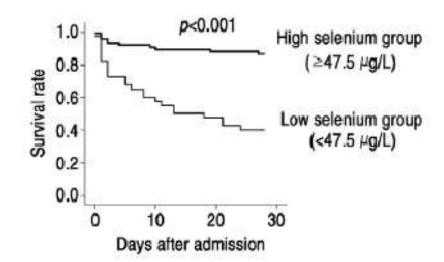

166

Intervention 252

Control

Les oligo—éléments:

- Sélénium (Se): co-facteur de la Gpx, thiorédoxines réductases et sélénoprotéine P
 - Modulation de la réponse inflammatoire via:
 - Inhibition du NF-KB via la modulation de l'expression des gènes des sélénoprotéines
 - Augmentation de la production hépatique de sélénoprotéines avec pour conséquence une diminution de la synthèse de la protéine Créactive (CRP)
 - les interférences avec la L-sélectine à la surface des monocytes et au niveau plasmatique.

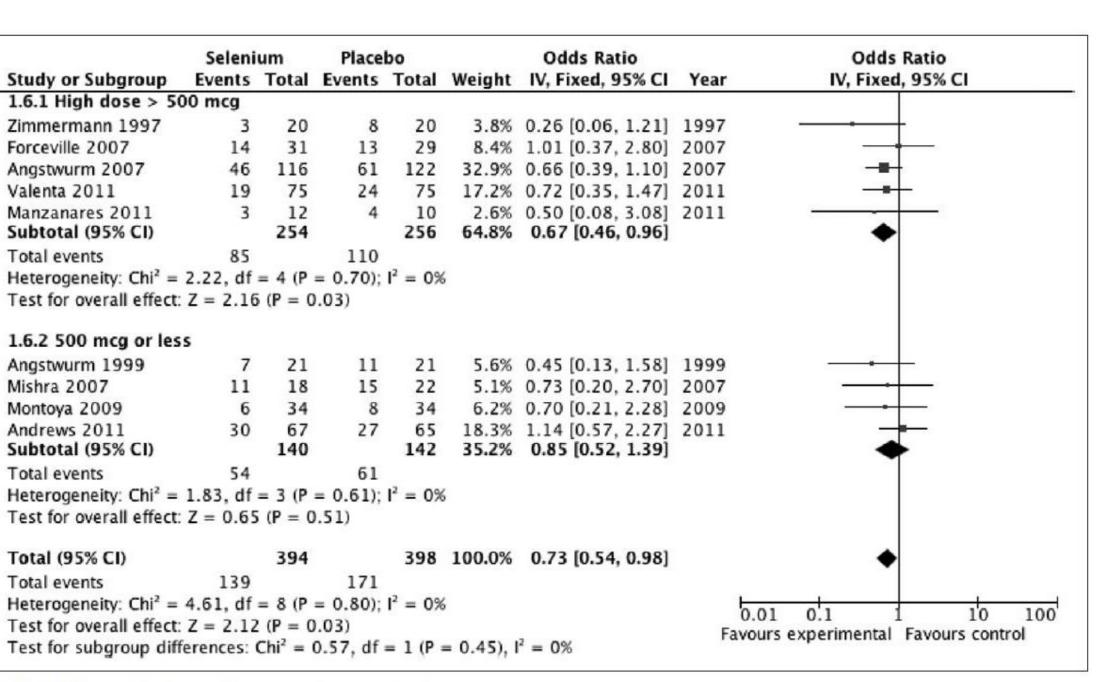

Prognosis of Patients with Septic Shock Associated with Low Serum Selenium

ment of Emergency Medicine, Seoul National University College of Medicine, Seoul, Korea ung Ha, M.D., Gil Joon Suh, M.D. Ph.D., Hui Jai Lee, M.D., Woon Young Kwon, M.D. Ph.D., Kyung Su Kim, Ki Young Jeong, M.D.

Table 2. Multivariate analysis

	p-values	Odds Ratio	95% confidence interval
Serum selenium level*	0.006	0.945	0.908-0.984
APACHE II score*	0.036	1.096	1.006-1.195
SOFA score	0.070	1.227	0.983-1.532
Mechanical ventilator	0.340	0.295	0.024-3.625
Renal replacement therapy	0.529	0.655	0.175-2.445

^{*} p<0.05


he Effect of Selenium Therapy on Mortality Patients With Sepsis Syndrome: A Systematic eview and Meta-Analysis of Randomized ontrolled Trials

(Crit Care Med 2013; 41:0

études retenues pour la méta-analyse

	Seleni	ium	Place	bo		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
Zimmermann 1997	3	20	8	20	3.8%	0.26 [0.06, 1.21]	1997	
Angstwurm 1999	7	21	11	21	5.6%	0.45 [0.13, 1.58]	1999	
Angstwurm 2007	46	116	61	122	32.9%	0.66 [0.39, 1.10]	2007	
Mishra 2007	11	18	15	22	5.1%	0.73 [0.20, 2.70]	2007	
Forceville 2007	14	31	13	29	8.4%	1.01 [0.37, 2.80]	2007	- -
Montoya 2009	6	34	8	34	6.2%	0.70 [0.21, 2.28]	2009	· · · · ·
Valenta 2011	19	75	24	75	17.2%	0.72 [0.35, 1.47]	2011	
Manzanares 2011	3	12	4	10	2.6%	0.50 [0.08, 3.08]	2011	
Andrews 2011	30	67	27	65	18.3%	1.14 [0.57, 2.27]	2011	
Total (95% CI)		394		398	100.0%	0.73 [0.54, 0.98]		•
Total events	139		171					
Heterogeneity: Tau ² =	0.00; CI	$hi^2 = 4$.	61, df =	8 (P =	0.80); I2	= 0%		0.02 0.1 1 10 50
Test for overall effect:				almodiliUs	1010-1078-C-53TM#5-W1			0.02 0.1 1 10 50 Favours Selenium Favours Placebo

jure 4. The effect of selenium versus placebo on mortality (random effects model). M-H = Mantel-Haenszel.

igure 6. Mortality by subgroup: high- versus low-dose selenium.

The impact of selenium administration on severe sepsis or septic shock: a meta-analysis of randomized controlled trials

Lin Kong^{1,4#}, Qing Wu^{2,4#}, Bo Liu^{3,4}

Afri Health Sci. 2021;21(1):277-85. https://dx.doi.org/10.4314/ahs.v21i1.36

5 essais randomisés contrôlés

	Selenium	group	Control	group		Risk Ratio		200	Risk Ratio	Consens	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	1	M-H,	Random, 9	15% CI	
Angstwurm 2007	46	116	61	122	50.2%	0.79 [0.60, 1.06]		-			
Chelkeba 2017	10	29	16	25	13.6%	0.54 [0.30, 0.96]	-		-		
Forceville 2007	20	31	21	29	36.2%	0.89 [0.63, 1.26]					
Total (95% CI)		176		176	100.0%	0.78 [0.63, 0.98]		4	•		
Total events	78		98								
Heterogeneity: Tau ² =	0.00; Ch2 =	2.18, df	2 (P = 0.	34); 2 =	8%		0.2	0.5	- ! -	-	_;
Test for overall effect:	Z=218(P=	0.03)					0.2 Favor	0.5 urs jexperimer	tal] Favo	ours [control]	0

Figure. 4 Forest plot for the meta-analysis of all-cause mortality.

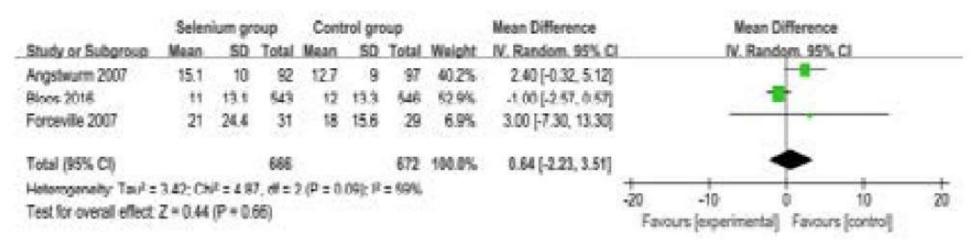
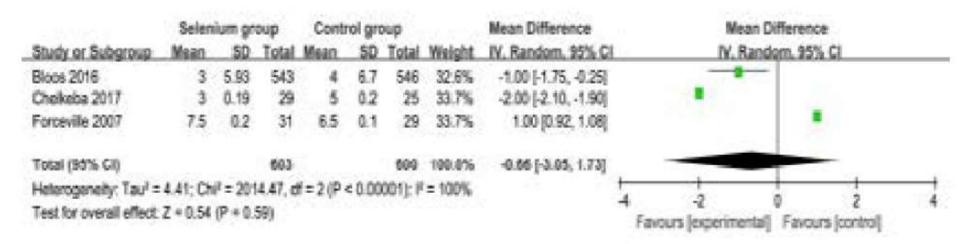



Figure. 5 Forest plot for the meta-analysis of length of ICU stay (day).

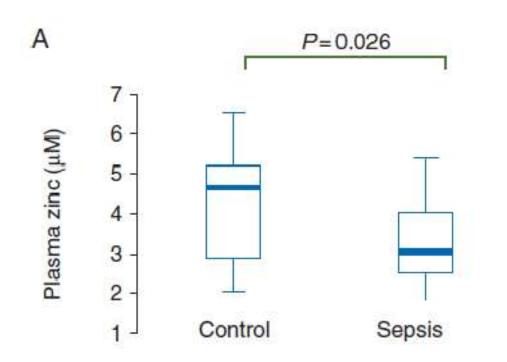
	Selen	ium gr	oup	Cont	rol gro	oup		Mean Difference		M	lean Differen	ice	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV. Random, 95% CI		IV.	Random, 95	% CI	
Bloos 2016	26	19.3	543	29	24.4	546	98.2%	-3.00 [-5.61, -0.39]					
Forceville 2007	25	45.2	31	33	29.6	29	1.8%	-8.00 [-27.22, 11.22]		-			
Total (95% CI)			574			575	100.0%	-3.09 [-5.68, -0.50]			•		
Heterogeneity: Tau ² =	0.00; Ch	P=0.2	6, df = 1	1 (P = 0	61); 2	= 0%			+	75	,	75	
Test for overall effect	Z = 2.34	(P = 0.	02)		08400				-50 Fav	-25 ours [experim	ental] Favo	25 ours (control)	50

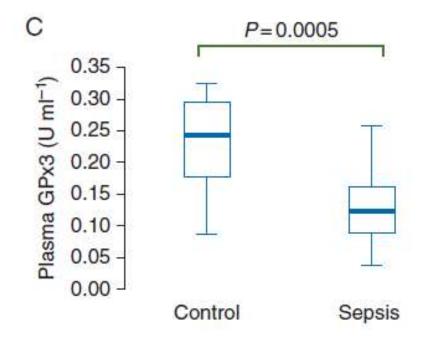
Figure. 6 Forest plot for the meta-analysis of length of hospital stay (day).

Figure. 7 Forest plot for the meta-analysis of duration of vasopressor therapy (day).

	Selenium	group	Control	group		Risk Ratio			Rick Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H. Random, 95% CI		M-H.	Random, 93	P% CI	
Chekeba 2017	5	29	7	25	90.7%	0.62 [0:22, 1.70]					
Forceville 2007	0	31	1	29	9.3%	0.31 (0.01, 7.38)	-	•			
Total (95% CI)		-60		54	100.0%	0.58 [0.22, 1.52]		-	•		
Total events	5		8			e drove-street					
Heterogeneity: Tau* * Test for overall effect:			1 (9* = 0.)	09) <u>C</u> F ≈	U%		0.01 Favo	0.1 ura (experime	ontal) Fevor	10 location of	100

Figure. 8 Forest plot for the meta-analysis of the incidence of acute renal failure.


- Autres oligoéléments:
- Cuivre (Cu): co-facteur de la SOD / métal de transition
- Zinc (Zn): co-facteur de la SOD
 - induction de protéines antioxydantes
 - protection des groupements thiols (-SH) des protéines
 - inhibition partielle de la formation des EOA (induites par Fe et Cu)
 - déficit en Zn bien corrélé à l'augmentation de l'inflammation systémique et de la charge bactérienne, propagation de l'infection et dysfonction immunitaire


w zinc and selenium concentrations in sepsis are sociated with oxidative damage and inflammation

Mertens¹, D. A. Lowes¹, N. R. Webster¹, J. Talib³, L. Hall³, M. J. Davies^{3,4}, Beattie² and H. F. Galley^{1,*}

Beattie² and H. F. Galley^{1,*}

British Journal of Anaesthesia 114 (6): 990–99

Acide urique

- Acide urique (métabolisme des purines):
 - réagit avec le radical hydroxyle (OH°)
 - Contribue à plus de 60% au pouvoir oxydant du plasma
 - Utilisation clinique délicate vue sa faible solubilité

- Groupements thiols: (-SH): réagissent avec les EOA
 - Glutathion: action vis-à vis des hydroperoxydes
 - N-acétylcystéine:
 - réduit le radical hydroxyle et le peroxyde d'hydrogène.
 - génère la cystéine qui participe à la synthèse du glutathion
 - Résultats cliniques contradictoires

En somme:

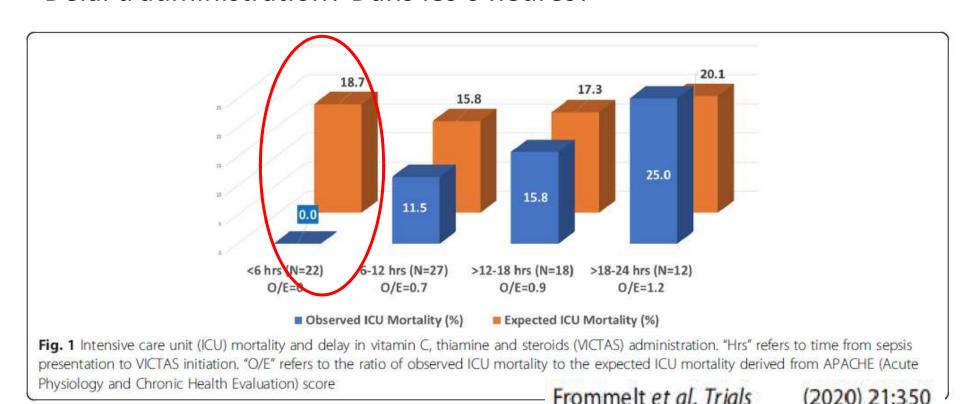
- Résultats cliniques divergents
- Méthodologies diverses
- SSC 2021: pas de recommandations pour une supplémentation en vitamine C au cours du choc septique
- ESPEN 2022:

Recommendation 1

Adequate amounts of all essential trace elements and vitamins shall be supplied to all patients receiving medical nutrition from the beginning of the period of nutritional support. Grade of recommendation A — Strong consensus 100%

Recommendation 2

Micronutrient supplements shall be provided orally or enterally if this can be done safely and effectively.


Grade of recommendation A — Strong consensus 100%

Recommendation 23.7

During critical illness, a higher vitamin C repletion dose of 2-3 g per day should be given IV during the acute phase of inflammation.

Grade of recommendation B — Consensus 84%

- Intérêt d'un traitement antioxydant combiné: possible
- Identification de:
 - Groupes particuliers de patients?
 - Choix des molécules? Doses administrées équilibrées?
 - Durée de la supplémentation?
 - Délai d'administration? Dans les 6 heures?

• Intelligence artificielle: perspective prometteuse

• guider le choix du traitement antioxydant

Table 4. Machine learning-based computational methods for prediction of antioxidant potential of proteins.

Server	Method	Sensitivity (%)	Specificity (%)	Accuracy (%)	Web-Server	Reference
AodPred	Support vector machine	75.09	74.48	74.79	http://lin.uestc.edu.cn/ server/AntioxiPred (accessed on 1 January 2021)	[200]
SeqSVM	Support vector machine	-		89.46	=	[201]
AOPs-SVM	Support vector machine	68	98.5	94.2	http://server.malab.cn/ AOPs-SVM/index.jsp (accessed on 1 January 2021)	[202]
Vote9	Support vector machine	65	99	94.1		[203]
SFS-SVM	Support vector machine	=	_	97.54	https: //github.com/salman-khan- mrd/Antioxident_proteins (accessed on 1 January 2021)	[204]
AnOxPePred	Deep convolutional neural network	-	-	_	http://services. bioinformatics.dtu.dk/ service.php?AnOxPePred-1.0 (accessed on 1 January 2021)	[205]