Fluids During septic Shock Olfa Hamzaoui Medical ICU Teaching Hospital of Reims France

Conflicts of Interest

- I have received honoraria from Baxter
- I have no conflicts of interest relevant to the content of this presentation
- I solely and independently prepared the content of this presentation
- The information shared in this webinar and presentation reflects my personal views and not necessarily those of Baxter.
- In case Baxter products should be mentioned during this webinar. Please refer to the IFU/SmPC relevant to your country of practice for Indications and further information, indications may vary by Country.

Fluid resuscitation during early sepsis: a need for individualization

Mathieu JOZWIAK ^{1, 2}, Olfa HAMZAOUI ³, Xavier MONNET ^{1, 2}, Jean-Louis TEBOUL ^{1, 2} *

Minerva Anestesiologica 2018 August;84(8):987-92

Pt presenting with **septic shock**

ne patient presented at the ED with fever, fatigue, and shortness of breath

INES

ving sepsis campaign: international elines for management of sepsis and septic < 2021

Intensive	Care Med (2021) 47:1181–12	247
		HEMODYNAMIC MANAGEMENT
	MODERATE	For adults with sepsis or septic shock, we recommend using crystalloids as first-line fluid for resuscitation.

GUIDELINES

Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021

Intensive Care Med (2021) 47:1181–1247

5 For patients with sepsis induced hypoperfusion or septic shock we suggest that at least 30 mL/kg of intravenous (IV) crystalloid fluid should be given within the first 3 hours of resuscitation.

2016 STATEMENT

"We **recommend** that in the initial resuscitation from sepsis-induced hypoperfusion, at least 30ml/kg of intravenous crystalloid fluid be given within the first 3 hours."

Pneumonia: relative hypovolemia and increased capillary leak

Peritonitis or abdominal sepsis: severe absolute hypovolemia

We recommend **individualizing** initial fluid resuscitation. No single formula can be applied to all patients, as **fluid requirements vary** substantially (depending on the source of sepsis and preexis cardiovascular function).

Fluid resuscitation during early sepsis: a need for individualization Mathieu JOZWIAK ^{1,2}, Olfa HAMZAOUI ³, Xavier MONNET ^{1,2}, Jean-Louis TEBOUL ^{1,2}* Minerva Anestesiologica 2018 August;84(8):987-92 Pt presenting with septic shock Decrease infusion rate if: . Worsening of tachypnea

. Abdominal sepsis Low PP

Importance of individualizing

within the **first hour**

. Fall in O_2 saturation

the initial **fluid therapy**

• RT-PCR SARS-CoV-2: positive

He had 30ml/Kg of fluids and antibiotherapy

He had 30ml/Kg of fluids and antibiotherapy

He had 30ml/Kg of fluids and antibiotherapy

nhn

EMERGENCY

William Producer

123

9(

 $\mathbf{1}$

1. Fluids

- 2. Norepinephrine
- 3. Dobutamine
- 4. Nothing else

Pression artérielle(mmHg)

Peripheral **resistance**

- related to peripheral DAP (r = 0.71) (p<0.001)
- but not related to peripheral
 SAP (r² = 0.04) and PP (r² = 0.02)

Review Article

Early norepinephrine use in septic shock

Olfa Hamzaoui¹, Rui Shi^{2,3} Thor

Thorac Dis 2020;12(Suppl 1):S72-S77

Table 1 Arguments in	favor of the early	use of norepinephrin	e in septic shock

Consequences of early use of norepinephrine	Rational	References
Prevention of prolonged severe hypotension	Septic shock is characterized by a depressed arterial tone. fluid administration alone cannot be sufficient to correct severe hypotension	(10,11)
Increase in cardiac output	Increase in cardiac preload due to an increase in stressed blood volume	(12-16)
	Increase in cardiac contractility	(17)
Improvement of microcirculation	Improvement of microvascular blood flow in pressure-dependent vascular beds through increase in MAP in severely hypotensive patients	(13)
Prevention of fluid overload	Early administration of norepinephrine limits the volume of fluids infused	(18)
Improvement of outcome	Likely in relation to the preceding effects	(18,19)

Critical Care 2010, 14:R142

RESEARCH

Open Access

Early administration of norepinephrine increases cardiac preload and cardiac output in septic patients with life-threatening hypotension

Olfa Hamzaoui, Jean-François Georger, Xavier Monnet, Hatem Ksouri, Julien Maizel, Christian Richard, Jean-Louis Teboul *

• NE increases preload

• NE decreases the degree of preload dependency

By redistributing the "non stressed" volume into the "stressed" volume

Exactly like fluids !

Without infusing fluids!

Review Article

Early norepinephrine use in septic shock

Olfa Hamzaoui¹, Rui Shi^{2,3} Thorac Dis 2020;12(Suppl 1):S72-S77

Consequences of early use of norepinephrine	Rational	References
Prevention of prolonged severe hypotension	Septic shock is characterized by a depressed arterial tone. fluid administration alone cannot be sufficient to correct severe hypotension	(10,11)
Increase in cardiac output	Increase in cardiac preload due to an increase in stressed blood volume	(12-16)
	Increase in cardiac contractility	(17)
Improvement of microcirculation	Improvement of microvascular blood flow in pressure-dependent vascular beds through increase in MAP in severely hypotensive patients	(13)
Prevention of fluid overload	Early administration of norepinephrine limits the volume of fluids infused	(18)
Improvement of outcome	Likely in relation to the preceding effects	(18,19)

CLINICAL INVESTIGATION

Norepinephrine exerts an inotropic effect during the early phase of human septic shock

O. Hamzaoui^{1,*}, M. Jozwiak², T. Geffriaud², B. Sztrymf¹, D. Prat¹, F. Jacobs¹, X. Monnet², P. Trouiller¹, C. Richard² and J.L. Teboul²

British Journal of Anaesthesia, 120 (3): 517–524 (2018)

In spite of the increase in LV afterload, all the indices of systolic function improved with

38 septic shock pts

with MAP< 65mmHg

Repeated TTE

resuscitated < 3 hrs and

٠

•

early NE suggesting an improved cardiac contractility

Review Article

Early norepinephrine use in septic shock

Olfa Hamzaoui¹, Rui Shi^{2,3} Thorac

Thorac Dis 2020;12(Suppl 1):S72-S77

22	Table 1 Arguments in favor of the early use of norepinephrine in septic shock					
	Consequences of early use of norepinephrine	Rational	References			
	Prevention of prolonged severe hypotension	Septic shock is characterized by a depressed arterial tone. fluid administration alone cannot be sufficient to correct severe hypotension	(10,11)			
	Increase in cardiac output	Increase in cardiac preload due to an increase in stressed blood volume	(12-16)			
		Increase in cardiac contractility	(17)			
	Improvement of microcirculation	Improvement of microvascular blood flow in pressure-dependent vascular beds through increase in MAP in severely hypotensive patients	(13)			
	Prevention of fluid overload	Early administration of norepinephrine limits the volume of fluids infused	(18)			
	Improvement of outcome	Likely in relation to the preceding effects	(18,19)			

Effects of very early start of norepinephrine in patients with septic shock: a propensity score-based analysis

Gustavo A. Ospina-Tascón^{1,2*}, Glenn Hernandez³, Ingrid Alvarez¹, Luis E. Calderón-Tapia¹, Ramiro Manzano-Nunez¹, Alvaro I. Sánchez-Ortiz¹, Egardo Quiñones¹, Juan E. Ruiz-Yucuma¹, José L. Aldana^{1,2}, Jean-Louis Teboul⁴, Alexandre Biasi Cavalcanti⁵, Daniel De Backer⁶ and Jan Bakker^{3,7,8,9}

Critical Care (2

(2020) 24:52

He had 3 litres of fluids and 0.3 microgramme/Kg/min of NE

He had 3 litres of fluids and 0.3 microgramme/Kg/min of NE

High incidence of ARDS in cases of SARS-CoV-2

Why do we need to predict fluid responsiveness?

> Not all the patients are fluid responsive

critical care review

Predicting Fluid Responsiveness in ICU Patients*

A Critical Analysis of the Evidence

Frédéric Michard, MD, PhD; and Jean-Louis Teboul, MD, PhD

CHEST 2002; 121:2000-2008

Source	Patients, No.	FC, No.	Fluid Infused	Volume Infused, mL	Speed of FC, min	Definition of Response	Rate of Response, %
Calvin et al ²	28	28	5% Alb	250	20-30	$\Delta SV > 0\%$	71
Schneider et al ³	18	18	FFP	500	30	$\Delta SV > 0\%$	72
Reuse et al ⁴	41	41	4.5% Alb	300	30	$\Delta \text{CO} > 0\%$	63
Magder et al ⁵	33	33	9% NaCl	100 - 950		$\Delta \text{CO} > 250$	52
						mL/min	
Di∈							59
Only 52%	6 of pa	tier	nts incr	ease the	eir ca	rdiac	$\frac{40}{56}$
	in rocr	onc	o to flu	id admi	inistra	tion	60
	micsh			ilu aunn	IIIISUC		45
WI a							40
Tousignam et ar-	υr	UE	11110	000	LU.	ADY - 4070	40
Michard et al ¹²	40	40	HES	500	30	$\Delta \text{CO} > 15\%$	40
Feissel et al ¹³	19	19	HES	8 mL/kg	30	$\Delta \text{CO} > 15\%$	53
Total	334	406		0			52

Why do we need to predict fluid responsiveness?

> Not all the patients are fluid responsive

> Fluid responsiveness is a dynamic phenomenon

Why do we need to predict fluid responsiveness?

- > Not all the patients are fluid responsive
- > Fluid responsiveness is a dynamic phenomenon
- Fluid overload is harmful

Sepsis in European intensive care units: Results of the SOAP study*

Jean-Louis Vincent, MD, PhD, FCCM; Yasser Sakr, MB, BCh, MSc; Charles L. Sprung, MD; V. Marco Ranieri, MD; Konrad Reinhart, MD, PhD; Herwig Gerlach, MD, PhD; Rui Moreno, MD, PhD; Jean Carlet, MD, PhD; Jean-Roger Le Gall, MD; Didier Payen, MD; on behalf of the Sepsis Occurrence in Acutely III Patients Investigators

Crit Care Med 2006; 34:344–353

Table 7. Multivariate, forward stepwise logistic regression analysis in sepsis patients (n = 1177), with intensive care unit mortality as the dependent factor

	OR (95% CI)	p Value
SAPS II score ^a (per point increase)	1.0 (1.0–1.1)	<.001
Cumulative fluid balance ^{b} (per liter increase)	1.1(1.0-1.1)	.001
Age (per year increase)	1.0(1.0-1.0)	.001
During sepsis: positive is an independent factor	cumulative fluid ba	lance rtality
Female gender	1.4(1.0-1.8)	.044

Why do we need to predict fluid responsiveness?

- > Not all the patients are fluid responsive
- > Fluid responsiveness is a dynamic phenomenon
- Fluid overload is harmful
- > Use of **fluid responsiveness** tests is associated with improved **outcome**

Characteristics of resuscitation, and association between use of dynamic tests of fluid responsiveness and outcomes in septic patients: results of a multicenter prospective cohort study in Argentina

Arnaldo Dubin^{1*}, Cecilia Loudet², Vanina S. Kanoore Edul³, Javier Osatnik⁴, Fernando Ríos⁵, Daniela Vásquez⁶, Mario Pozo⁷, Bernardo Lattanzio⁸, Fernando Pálizas⁷, Francisco Klein⁹, Damián Piezny⁵, Paolo N. Rubatto Birri¹, Graciela Tuhay⁹, Analía García¹⁰, Analía Santamaría¹¹, Graciela Zakalik¹², Cecilia González¹³ and Elisa Estenssoro² on behalf of the investigators of the SATISEPSIS group

Ann. Intensive Care (2020) 10:40

- National, multicenter prospective cohort study (n = 787) fulfilling Sepsis-3 definitions
- Examine the association between the use of dynamic tests of fluid responsiveness and outcome

Only 584 patients received fluids

Table 4 Independent determinants of mortality according to logistic regression analysis

Variable	Odds ratio	[Cl 95%]	Р
Charlson score	1.21	[1.07–1.36]	0.002
SOFA score	1.16	[1.07–1.26]	< 0.0001
Serum lactate	1.21	[1.08–1.37]	0.001
Mechanical ventilation	12.2	[5.73-26.00]	< 0.0001
Dynamic tests of fluid responsiveness	0.37	[0.21–0.67]	0.001

We recommend **individualizing** initial fluid resuscitation. No single formula can be applied to all patients, as **fluid requirements vary** substantially (depending on the source of sepsis and preexis cardiovascular function).

We recommend **individualizing** fluid therapy using **dynamic challenges**.

GUIDELINES

Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021

Intensive Care Med (2021) 47:1181–1247

. For adults with sepsis or septic shock, we **suggest** using dynamic measures to guide fluid resuscitation, over physical examination or static parameters alone

Veak recommendation, very low-quality evidence

emarks

)ynamic parameters include response to a passive leg raise or a fluid bolus, using stroke volume (SV), stroke volume variation (SVV), pulse pressure variation (PPV), or echocardiography, where available

Patient in the ICU: 2 hours later

Fluid resuscitation during early sepsis: a need for individualization

Mathieu JOZWIAK 1, 2, Olfa HAMZAOUI 3, Xavier MONNET 1, 2, Jean-Louis TEBOUL 1, 2 *

Minerva Anestesiologica 2018 August;84(8):987-92

Improved Outcome Based on Fluid Management in Critically III Patients Requiring Pulmonary Artery Catheterization¹⁻³

JOHN P. MITCHELL, DAN SCHULLER, FRANK S. CALANDRINO, and DANIEL P. SCHUSTER

AM REV RESPIR DIS 1992; 145:990-998

Intensive Care Med (2007) 33:448–453	ORIGINAL
Xavier Monnet Nadia Anguel David Osman Olfa Hamzaoui Christian Richard Jean-Louis Teboul	Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI/ARDS

Higher is the PVPI higher is the risk to develop PE

Fluid resuscitation during early sepsis: a need for individualization

Mathieu JOZWIAK ^{1, 2}, Olfa HAMZAOUI ³, Xavier MONNET ^{1, 2}, Jean-Louis TEBOUL ^{1, 2 *}

Minerva Anestesiologica 2018 August;84(8):987-92

Restriction of Intravenous Fluid in ICU Patients with Septic Shock

ORIGINAL ARTICLE

Early Restrictive or Liberal Fluid Management for Sepsis-Induced Hypotension

The National Heart, Lung, and Blood Institute Prevention and Early Treatment of Acute Lung Injury Clinical Trials Network*

Table 3. Outcomes.*								
Outcome	Restrictive Fluid Group (N=782)		Liber	Difference (95% Cl)†				
	No. of Patients	Mean (95% CI)	No. of Patients	Mean (95% CI)				
Death before discharge home by day 90 — % of patients <u>:</u>	782	14.0 (11.6 to 16.4)	781	14.9 (12.4 to 17.4)	–0.9 (–4.4 to 2.6)§			
No. of days free from organ-support therapy at 28 days	778	24.0 (23.4 to 24.6)	778	23.6 (23.0 to 24.3)	0.3 (-0.5 to 1.2)			
No. of days free from ventilator use at 28 days	773	23.4 (22.7 to 24.1)	771	22.8 (22.0 to 23.5)	0.6 (-0.4 to 1.6)			
No. of days free from renal-replace- ment therapy at 28 days	737	24.1 (23.4 to 24.8)	738	23.9 (23.2 to 24.6)	0.2 (-0.8 to 1.2)			
No. of days free from vasopressor use at 28 days¶	778	22.0 (21.4 to 22.7)	778	21.6 (20.9 to 22.3)	0.4 (-0.5 to 1.3)			
No. of days out of the ICU from day 1 to day 28	778	22.8 (22.2 to 23.4)	778	22.7 (22.0 to 23.3)	0.1 (-0.8 to 1.0)			
No of days out of the hospital by day 28	778	16.2 (15.4 to 17.0)	778	15.4 (14.6 to 16.2)	0.8 (-0.3 to 1.9)			

How can we blindy randomise patients without estimating the individual need of fluids ???

Some others who need less fluids will be in the wrong liberal strategy and will have increased risk of mortality

Fluid resuscitation during early sepsis: a need for individualization Mathieu JOZWIAK 1, 2, Olfa HAMZAOUI 3, Xavier MONNET 1, 2, Jean-Louis TEBOUL 1, 2 * Minerva Anestesiologica 2018 August;84(8):987-92 Individualise the Pt presenting with septic sho initial fluid bolus **Decrease** infusion rate if: Infuse around 10 mL/kg Increase infusion rate if: crystalloids . Worsening of tachypnea . Fluid losses . Mottling or ↗ CRT within the first hour . Fall in O_2 saturation . Abdominal sepsis Low PP Consider early use of NE (low DAP)

Fluid resuscitation during early sepsis: a need for individualization Mathieu JOZWIAK ^{1, 2}, Olfa HAMZAOUI ³, Xavier MONNET ^{1, 2}, Jean-Louis TEBOUL ^{1, 2} * Minerva Anestesiologica 2018 August;84(8):987-92 Individualise the Pt presenting with septic shoc initial fluid bolus **Decrease** infusion rate if: Infuse around 10 mL/kg Increase infusion rate if: . Worsening of tachypnea crystalloids . Fluid losses . Mottling or ↗ CRT . Fall in O₂ saturation within the **first hour** . Abdominal sepsis Low PP **Consider Early** use of NE PLR PPV If shock persists, SVV EEO \triangleright test preload responsiveness V_{T} challenge IVC diameter variation \triangleright Consider dynamic indicators of preload responsiveness

Fluid resuscitation during early sepsis: a need for individualization Mathieu JOZWIAK 1-2, Olfa HAMZAOUI 3, Xavier MONNET 1-2, Jean-Louis TEBOUL 1-2 * Minerva Anestesiologica 2018 August;84(8):987-92 Pt presenting with septic shoc

Fluid resuscitation during early sepsis: a need for individualization

Mathieu JOZWIAK ^{1, 2}, Olfa HAMZAOUI ³, Xavier MONNET ^{1, 2}, Jean-Louis TEBOUL ^{1, 2} *

Minerva Anestesiologica 2018 August;84(8):987-92

