

ANTIBIOTIQUES PAR VOIE INHALÉE !

Pr Ag AYACHI JIHENE

Service de Réanimation Médicale CHU Ibn El Jazzar Kairouan

ATR Décembre 2023

RATIONNEL

Anesthesiology 2005; 102:995-1000

© 2005 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc.

Intravenous versus Nebulized Ceftazidime in Ventilated Piglets with and without Experimental Bronchopneumonia

Comparative Effects of Helium and Nitrogen

Marc Tonnellier, M.D., ‡ Fabio Ferrari, M.D., † Ivan Goldstein, M.D., Ph.D., ‡ Alfonso Sartorius, M.D., § Charles-Hugo Marquette, M.D., Ph.D., Jean-Jacques Rouby, M.D., Ph.D.#

Anesthesiology 2002; 97:199-206

Influence of Lung Aeration on Pulmonary Concentrations of Nebulized and Intravenous Amikacin in Ventilated Piglets with Severe Bronchopneumonia Marilia Elman, M.D.,* Ivan Goldstein, M.D.,† Charles-Hugo Marquette, M.D., Ph.D.,‡ Fréderic Wallet, M.D.,§ Gilles Lenaour, Ph.D., Jean-Jacques Rouby, M.D., Ph.D., # the Experimental ICU Study Group** Notes and the severe group, pulmonary concentrations of amikacin in lung segments with the most severe stages of bronchopneumonia were

significantly lower than in lung segments with less severe forms of bronchopneumonia (P<0.01). This difference was not observed in the intravenous group.

© 2002 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc

Lung Deposition and Efficiency of Nebulized Amikacin during Escherichia coli Pneumonia in Ventilated Piglets

Intensive Care Med (2009) 35:1792–1800 DOI 10.1007/s00134-009-1605-2

EXPERIMENTAL

Passage systémique

J Antimicrob Chemot doi:10.1093/jac/dkw3

The low bioavailability Of **nebulized** amikacin allows multiple administrations of high doses up to 60 mg/kg with a jet **nebulizer** in order to **increase the** success rate of the treatment as compared with the intravenous route, with a **controlled risk of** systemic toxicity as suggested by the low systemic exposure

Passage systémique

REVIEW ARTICLE

Quelles modalités ?

Dépôt de l'aérosol

Générateur d'aérosol

Générateur d'aérosol

PNEUMATIQUE

ULTRA-SONIQUE

TAMIS VIBRANT

- Jetable
- Simple
- Pas de débit de gaz
- Volume résiduel –
- Silencieux

- - Débit de gaz
 - Bruit
 - Volume résiduel ++
 - Décontamination
 - Température

- Pas de débit de gaz
- Volume résiduel -
- Silencieux
- Jetable

Solutions visqueuses

Réglage du ventilateur

"Deep, large, slow breath..."

Ventilation du patient obstructif? Sédation?

Position du nébuliseur

Filtre

Intensive Care Med (2013) 39:535–536 DOI 10.1007/s00134-012-2778-7 The importance of protecting the mechanical ventilator during colistin methanesulfonate nebulization	RRESPONDENCE Frances Giorgio Roberto Antonio	co Mojoli Antonio Iotti Imberti Braschi	
1500 H 21:30	н 22:00 н	22:05	
In Fig. 1 Airways flow tracings during p rapidly progressive expiratory valve mal	spiration spiration spiration Ab Ab Pn Ari Ari	obstruction filtre sence d' e eumothora rét cardiaq	xpiration ax ue

Quelle place dans le traitement curatif des PAVM ?

Nebulized Ceftazidime and Amikacin in Ventilator-associated Pneumonia Caused

TABLE 2 ANTIBIOTIC TREATMENT EFFICIENCY

1	ADEL 2. ANTIDIOTIC TREATMENT EFFICIENCE			
	Nebulization and intravenous	Aerosol (n = 20)	Intravenous (n = 20)	P Value
¢	infusion of ceftazidime and	14 (70)	11 (55)	0.33
P	amikacin provide şimilar	3 (15)	6 (30)	0.26
R	efficiency for treating ver Nebuli	zatior	n induced	an
C	associated pneumonia c obstru	ction	of	the
L	by Pseudomonas aerugin expira	tory	filter in	three 🛛
N	patien	ts.	The obstru	uction
	mg.kg ⁻¹ each 25 mg.kg ⁻¹ Caused	card	iac arrest	-

Table 2. Clinical and Bacteriological Outcomes, Mortality, and Adverse Events in Both Treatment Groups

	No. (%) of patients	
Outcome	IV colistin group ($n = 43$)	IV colistin group AS-IV colistin group (n = 43) $(n = 43)$	
Clinical outcome			
Clinical cure	14 (32.5)	23 (54)	.05
Clinical improvement			
Clinical failure	In multivariate	analysis No	statistically
Recurrence			Statistically
Bacteriological outcome	significant bet	ter clinical c	ure rate was
Eradication	observed in	association	with AS-IV
Persistent			ratio 0.075
Recurrence	collstin treati	nent (odds	rallo, 2.375
Colonization	95% confiden	ce interval,	0.901-6.258
Mortality			
All-cause	r –0.00).		
VAP-related	11 (20)	7 (10)	.203
Adverse events			
Nonbrotovicity	8 (19)	8 (19)	>.99
Nephrotoxicity			

IV colistin group.

		Table 3. Secondary Effic	acy and Microbiologica	al Endpoints			
1	oaseline	Secondary Efficacy Endpoint		AFIS (N=71)	Placebo (N=71)	Difference Between Groups (95%CI)	P value
A		Hierarchical composite endpoir clinical cure ^{a,b}	nt of mortality and time to)	. ,	Å	
F		Mortality first		10	10		
P	ε	Clinical cure		15	18		
N	Change fro	Hierarchical composite endpoi ventilator-free days ^b	Critères se	condair	res néo	atifs :	
-		Mortality first	G	jaan e i			
Zs		Ventilator free days	Ventilator free days				
Ep an		Days free of mechanical venti (mean(SD))	Mortalité		5)	0.02	
Cl		Days of IV antibiotics (mean(S				5)	0.13
		Number of ICU days (Day 1 to	28) (mean(SD))	28.9 (12.4)	26.2 (15.6)	2.7 (-2.0,7.4)	0.09
		Mortality (Day 1 to 28)(%)		17 (24)	12 (17)	7 (-6,20)	0.32
		Clinical relapse rates ^c (%)		10 (14)	14 (20)	-6 (-18,7)	0.37
		Tracheal culture at Day 3 posti bacteria*(%)	ve for Gram-negative	19 (27)	40 (56)*	-29 (-44,-13)	<0.001
		Tracheal culture at Day 7 posti bacteria**(%)	ve for Gram-negative	12 (17)	29 (41) **	-24 (-37,-9)	0.002

	Assessed for eligibilit	ty (n=408)	
		Excluded (n=382)	
Table 3 Primary and secondary endpoints in the effica	cy population.		
Primary and secondary endpoints	Tobra Inhal group (n = 14)	Placebo group (n = 12)	p-Value
Primary endpoint Eradication at visit 6	14 (100%)	3 (25%)	<0.001
Secondary endpoints Length of stay in ICU Median (IQR)	12 (7.5; 19)	14 (10; 27)	0.465
Duration of systemic antibiotic treatment Median (IQR)	8 (7; 9.5)	6 (6; 9)	0.324
Systemic antibiotic free days (after the inc Median (IQR)	:lusion) 5 (3; 7)	4 (2.8; 6.5)	0.712
Duration of mechanical ventilation for pn Median (IQR)	eumonia (days) 7 (5; 10.8)	7 (6.8; 8)	0.812
Ventilator-free days Median (IQR)	3 (2; 10)	7 (3; 10)	0.624
Reinfection of pneumonia caused by the s No	ame pathogen 5 (36%)	8 (67%)	NA
ICU = intensive care unit; IQR = interquartile	range; n = number; Tobra Inhal group = Tobramy	/cin Inhalation group; % = percent.	
^c Charité – Univer Epidemiology, Chi ^f Department of In ^g Charité – Unive Department of Ar ^h HMU-Health an ^h = Number. Analysed (n	=12) tient were given 300 mg aerosolized Tobramycin or aerosolized	Analysed (n=14) placebo twice a day, in addition to standard-of-care intravenous antib	iotics.

Russell et al. BMC Pulme DOI 10.1186/s12890-01	onary Medicine (2016) 16:40 6-0202-8		BM0	C Pulmon	ary Medicine	
Table 1 Study Characterist	tics, Quality and Results, in	Chronological Order			·	
Author and year	Study Participants (age, in years)	Description of intervention	Study period	Length of follow up	Primary Outcome (successful treatment)	Results
Hallal, et al, 2007 [9]	N=10 Age: 23–72 (Mean age: AA 52.6, IV 53.6)	Inhaled tobramycin or IV tobramycin AND IV β -lactam	7 months	28 days	Resolution of VAP	100 % of AA vs. 60 % of IV patients had clinical resolution of VAP. No p value reported.
Palmer et al, 2008 [12]	AA 6 This insuf use	systematic ficient ev of inha	c revie idence iled	ew fo e fo anti	found r the biotic	AA group had reduced signs of respiratory infection [Centers for Disease Control National Nosocomial Infection Survey and VAP (73.6 % to 35.7 % vs. placebo: 75 % to 78.6 %) and reduction in clinical pulmonary infection score (-1.42 vs. placebo: + 0.04), (both $p \le .05$).
Kattanaumpawan et al, 2010 [14	thera	apy as prim ment of VA	P or N	r adj /AT.	uvant ^{butcome}	Favorable clinical outcome was 51.0 % in the AA group and 53.1 % in the placebo group ($p = 0.84$). Significant increase in favorable microbiological outcome in AA vs. placebo group (60.9 vs. 38.2 %; p = 0.03)
Lu et al, 2011 [10]	N = 40 patients Ages 43–77 (Mean age: AA 58, IV 60)	Nebulized ceftazidime and amikacin OR IV ceftazidime and amikacin/ciprofloxacin.	36 month	28 days	Successful treatment	AA and IV groups performed similar in terms of successful treatment (70 vs. 55 %; $p = 0.33$).
Niederman et al, 2012 [11]	N = 69 (Mean age: AA q12h 56.1, AA q24h 62.8, or placebo 62.0)	Inhaled amikacin (BAY41-6551) q12h, q24h, or placebo q12h for 7–14 days, plus standard IV antibiotics	13 months	31 days	Clinical cure (secondary study outcome)	Clinical cure achieved in 93.8 % (AA q12h), 75 % (AA q24h) and 87.5 % (placebo; $p = 0.467$).
Palmer et al, 2014 [13]	N = 43 (Mean age AA 57.5, placebo 60.6)	AA or saline placebo AND systemic antibiotics (per treating MD) was given for 14 days or until extubation	Does not state	14 days	Clinical Pulmonary Infection Score (CPIS)	CPIS score in AA significantly reduced when compared to placebo (Mean \pm SE AA: 9.3 \pm 2.7 to 5.3 \pm 2.6 vs. placebo: 8.0 \pm 23 to 8.6 \pm 2.10; $p = 0.0008$)

Intensive Care Med (2020) 46:888–906 https://doi.org/10.1007/s00134-020-05980-0

NARRATIVE REVIEW

Ν

D

W

Ventilato narrativo

Laurent Papa

of mechanical ventilation [148, 149]. The use of nebulised antibiotics as an adjunctive treatment (i.e., in addition to effective intravenous therapy) is also not recommended; two recent randomized-controlled trials failed to demonstrate superiority of nebulised antibiotics (amikacin alone or combined with fosfomycin) over placebo in patients with VAP due to "traditional pathogens" [150, 151]. The use of nebulised antibiotics should therefore be restricted to patients with VAP to XDR-Gram-negative pathogens susceptible only to colistin or aminoglycosides

Table 1

Study decign and nationt characteristics in the included studies

			Microbiological succes	8			
					l success		
Kwa	(2005)	(Pneumonia, VAP)					
Motaouakkil	(2006)	(VAP)		—		-	
Lin	(2010)	(VAP)		+		-	
Rattanaumpawa	an (2010) ((VAP)		+		-	
Athanassa	(2012) ((VAT)	+-+		<u> </u>		
Kuo	(2012)	(NP,VAP)		– ∣		-	
Choi	(2014)	(Pneumonia)				-	
Chen	(2014) (
Maskin	(2015) (Eradication	of Gran	n-negat	tive		
Hsieh	(2016) (hacteria with	inhaled co	olistin v	Nas		
Abdellatif	(2016)					_	
Total (final off	(anto)	achieved in 1	.3% (57.6%)	- 83.2%	′o) 「		
Total (nxeu en	ettes)	No difference	e was obs	served	in 🕨		
rotar (randoni e	enects)	miarabiologi	al aradiaa	tion y	vith 🗖		
		microbiologi	cal eradica	tion v			8
		inhaled colis	stin compare	d with	no	0,8 1,0	
		active inhaled	troatmont	(OR 3)	03		
Fig. 4 Declad	analucie o				.00,		
colistin. (Sau	analysis 0 ares = pr	0.31 – 29.7; I	2 = (1.9 %)		h	inhaled co-	1
monds = poole	ed propor	tion for all studies).			es	= 95% CI;	
Hsieh et al.,	Retrospec			(0,1)			
2016 [22]	cohort	0.31 – 3	$.88$ $I_{2} = 68.2$	%).			

C N L N E

The overall mortality, n	<pre>ephrotoxicity,</pre>
length of MV, and ICU	stay_did_not
differ between the two g	roups.
Bronchospasm occu	urred_more
common in NC group v	with statistical
significance (OR, 5.19; 25.52; $p = 0.04$) Subtota Total eve Heteroge Test for Total (9: Total (9: Total eve Heterogeneity: Tau ² = 0.39; Chi ² = 19.32, df = 7 (F Test for overall effect: Z = 2.72 (P = 0.006) Test for subgroup differences: Chi ² = 0.29, df = 1 (In conclusion, based on the present evidence, administration of NC cannot improve the clinical response but increases microbiological eradication with a higher risk of bronchospasm compared to the systemic antibiotic group

Quelle place dans la prévention des PAVM ?

TABLE 2 Outcomes of participants in the two arms of the study#

Effic	TABLE 3 MDR and colistin-resista the study period"	Col and NS gr	roups during		
		Overall	Col group	NS group	p-value
ORIGINAL ARTIC RESPIRATORY IN	Overall isolates Total TBA isolates Total blood isolates	194 (100) 130 (67) 64 (33)	97 (100) 60 (61.9) 37 (38.1)	97 (100) 70 (72.2) 27 (27.8)	0.17 0.17
Nebulis pneumo	MDR TBA isolates Airway colonisation cases VAT or VAP cases Gram-positive TBA isolates	79 (40.7) 48 (24.7) 31 (16) 7 (3.6)	30 (30.9) 20 (20.6) 10 (10.3) 3 (3.1)	49 (50.5) 28 (28.9) 21 (21.6) 4 (4.1)	0.01 0.24 0.05 1.0
Marios Karvou Apostolos Tria Efthimia Petir	Gram- Gram- Gram- Gram-	ngs s	uggest	that	0.01 0.74 0.28 1.0
Affiliations: ¹ Critic ² Microbiology Labo	Airway VAT or Significant	<u>colist</u> effec	i <u>n had</u> t on	<u>no</u> VAP	0.39 0.33 0.78
Eur Respi	Gram- Gram- Gram- Gram- Gram-				0.75 1.0 0.48 0.28 1.0
	All data are presented as n (%). MDR: group; NS group: normal saline group; pneumonia. #: polymicrobial cases con group.	multidrug-resistan ; VAT: ventilator-as ntaining Gram-neg	t; TBA: tracheobronc sociated tracheobrono ative microbes were	hial aspirate; Col chitis; VAP: ventili included in the	group: colistin ator-associated Gram-negative
	Tracheostomy	76 (45.2)	43 (51.2)	33 (39.3)	0.16

En pratique ? Les recommandations ?

ROLE OF INHALED ANTIBIOTIC THERAPY

XIX. Which A Due to Acine Recommend

XX. Which Antibiotic Should Be Used to Treat Patients With HAP/VAP Due to Carbapenem-Resistant Pathogens? Recommendation

In patie we sugge sulbactar recomme In patie that is se nous pole tion, low colistin (

In patients with HAP/VAP caused by a carbapenem-resistant pathogen that is sensitive only to polymyxins, we recommend intravenous polymyxins (colistin or polymyxin B) (strong recommendation, moderate-quality evidence), and we suggest adjunctive inhaled colistin (weak recommendation, low-quality evidence).

Values and Preferences: These recommendations place a high value on achieving clinical cure and survival; they place a lower value on burden and cost.

infecting organism is or is not multidrug resistant (MDR).

Clinical Microbiology and Infection 23 (2017) 629-639

Nebulization of antibiotics in mechanically ventilated adults with respiratory infections is a practice that is increasingly used, despite a lack of standardization and limited evidence on the associated efficacy and safety [2,3]. Based on a previous systematic review and meta-analysis [7], this ESCMID panel does not support the use of nebulization of antibiotics in any of the scenarios assessed because the available evidence is weak and heterogeneous (and in some scenarios entirely absent). Further research to achieve high-quality evidence is urgently needed.

Given that aerosolization of antibiotics is an active area of research, and the literature is emerging [45–47], the meta-analysis should be updated periodically. Hence, these recommendations may change in the future as new study data become available.

SFAR

Recommandations formalisées d'experts

PNEUMONIES ASSOCIÉES AUX SOINS DE RÉANIMATION

RFE commune SFAR – SRLF Société Française d'Anesthésie et de Réanimation

R3.6 – Dans le cadre des pneumonies documentées à bacilles à Gram négatif multirésistants, définis comme sensibles à la colimycine et/ou aux aminosides et lorsqu'aucun autre antibiotique n'est

efficace, il faut probablement administrer la colimycine (colistiméthate sodique) et/ou un aminoside par voie nébulisée.

GRADE 2+, ACCORD FORT

HEALTHCARE ASSOCIATED PNEUMONIA IN INTENSIVE CARE UNIT

Conclusion

Très peu de preuves en faveur de l'utilisation d'antibiotiques nébulisés dans le traitement des PAVM

Meilleure concentration pulmonaire Pneumonies graves??!

Risque de toxicité et effets indésirables graves

Absence de gain : <u>éradication microbiologique</u>, <u>efficacité clinique</u> et <u>mortalité</u>

Conclusion

Absence de recommandations formelles indiquant l'utilisation des aérosols d'antibiotiques (Il faut probablement... we suggest....)

Intérêt probable :

<u>PAVM à BMR en dernier recours</u> devant des difficultés thérapeutique malgré un traitement systémique bien conduit

> Le débat reste ouvert... Résultats contradictoires....

Merci pour votre attention

