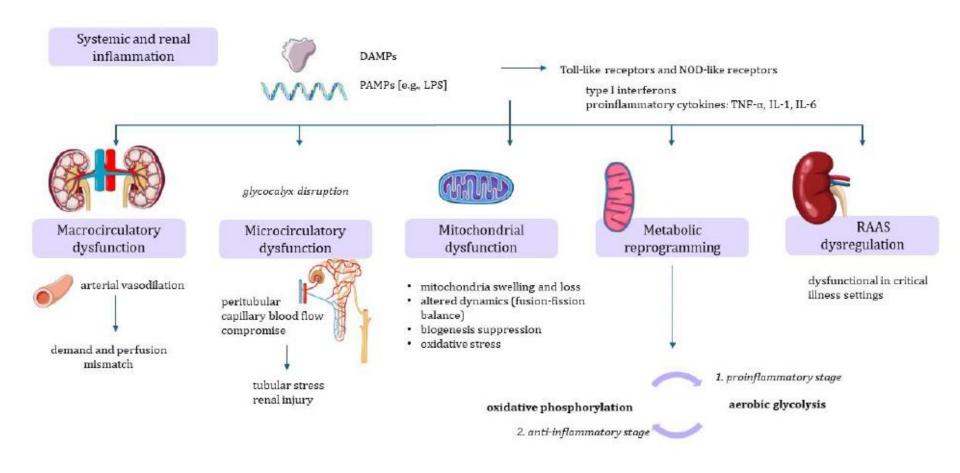
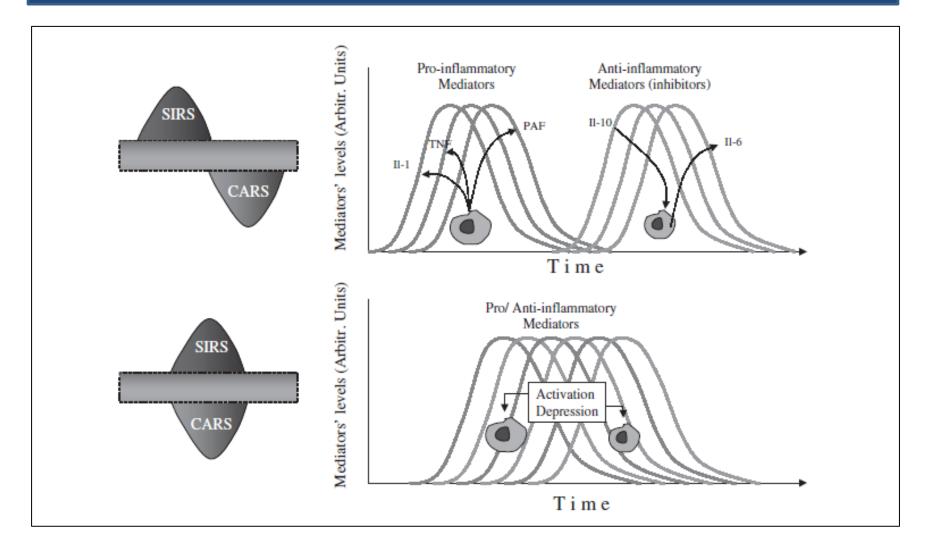

MODALITÉS DE L'ÉPURATION EXTRARÉNALE DANS LE CHOC SEPTIQUE

Pr Ag AYACHI JIHENE

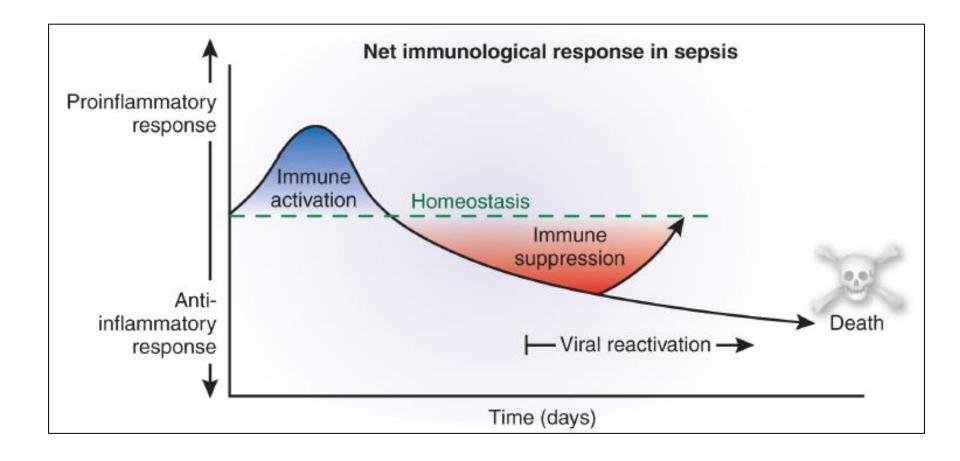

Service de Réanimation Médicale CHU Ibn El Jazzar Kairouan

ATR Novembre 2024

PHYSIOPATHOLOGIE

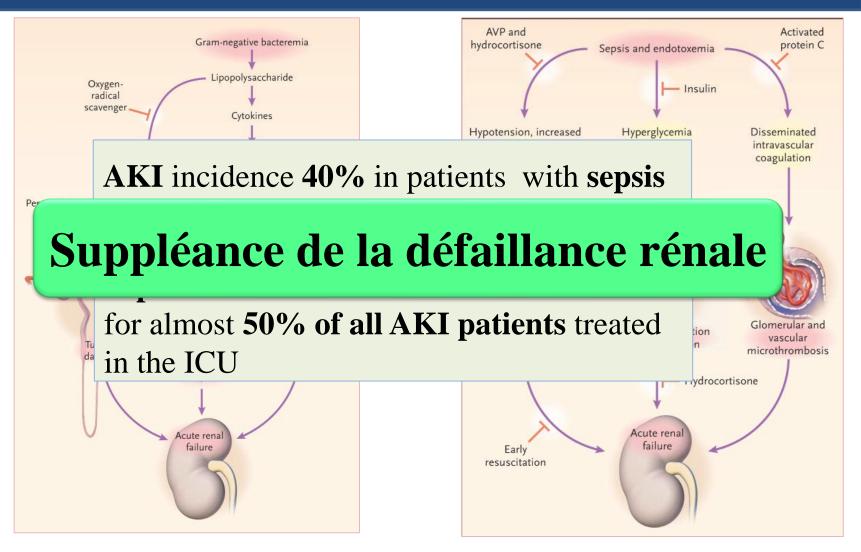


PHYSIOPATHOLOGIE SA-AKI

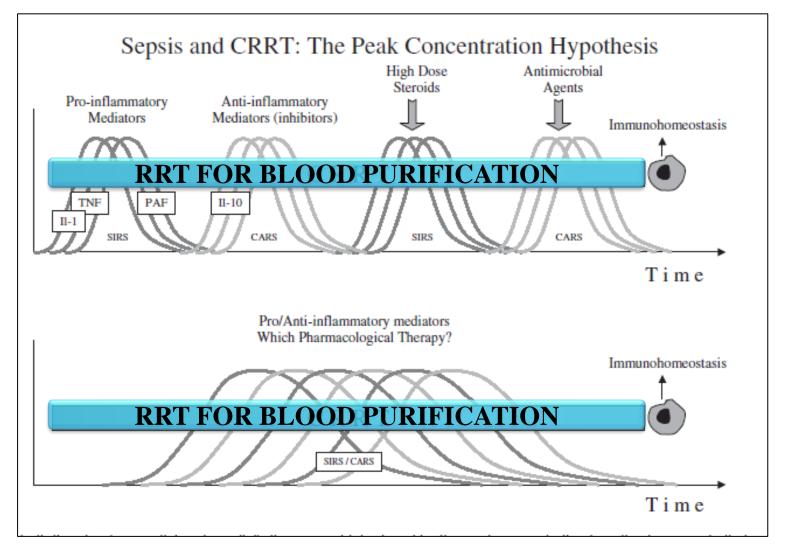


Sepsis-associated AKI

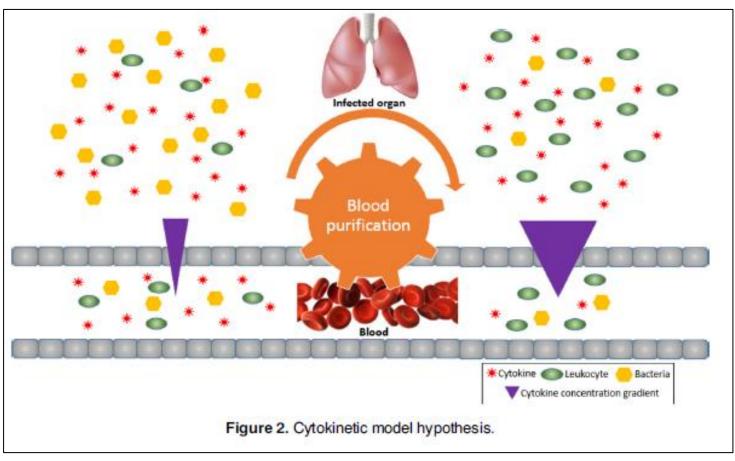
PHYSIOPATHOLOGIE CYTOKINE STORM



PHYSIOPATHOLOGIE CYTOKINE STORM


INTÉRÊT DE L'ÉPURATION EXTRA-RÉNALE AU COURS DU CHOC SEPTIQUE ?

RRT FOR SA-AKI



Robert W et al N Engl J Med 2004 Telma Pais et al Int. J. Mol. Sci. 2024

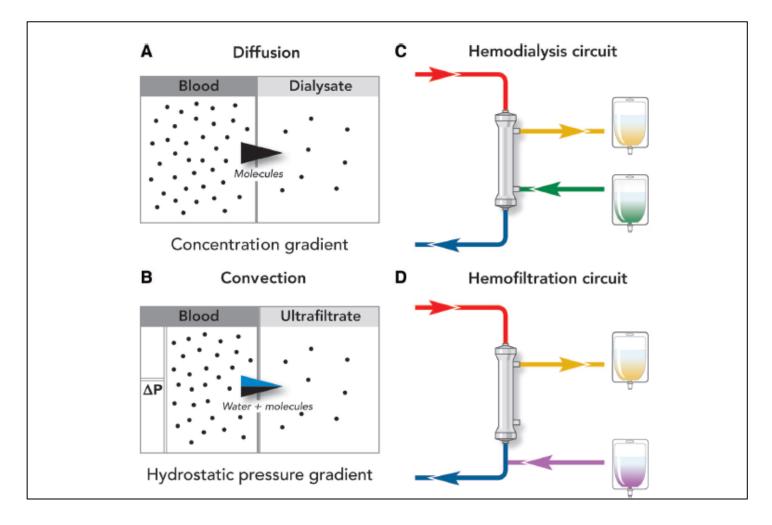
RRT FOR BLOOD PURIFICATION

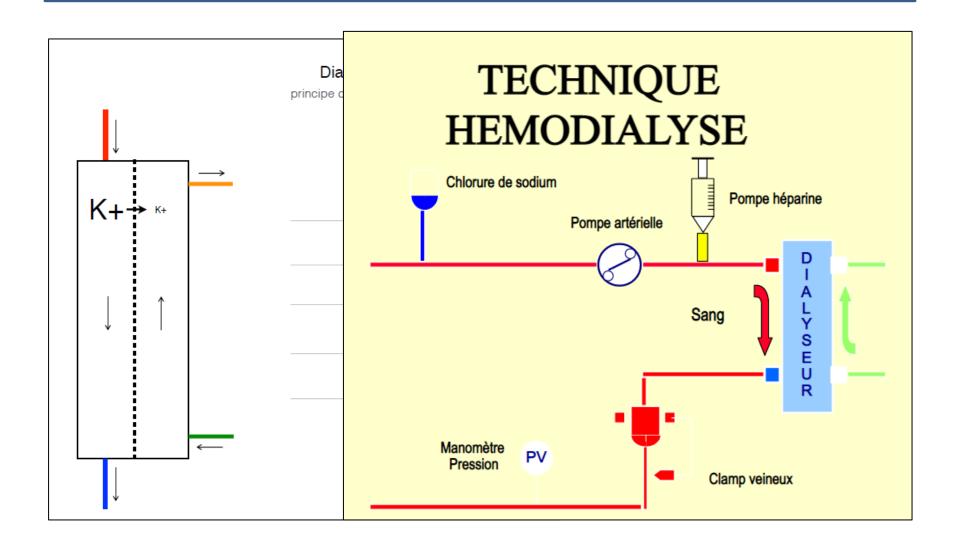
RRT FOR BLOOD PURIFICATION

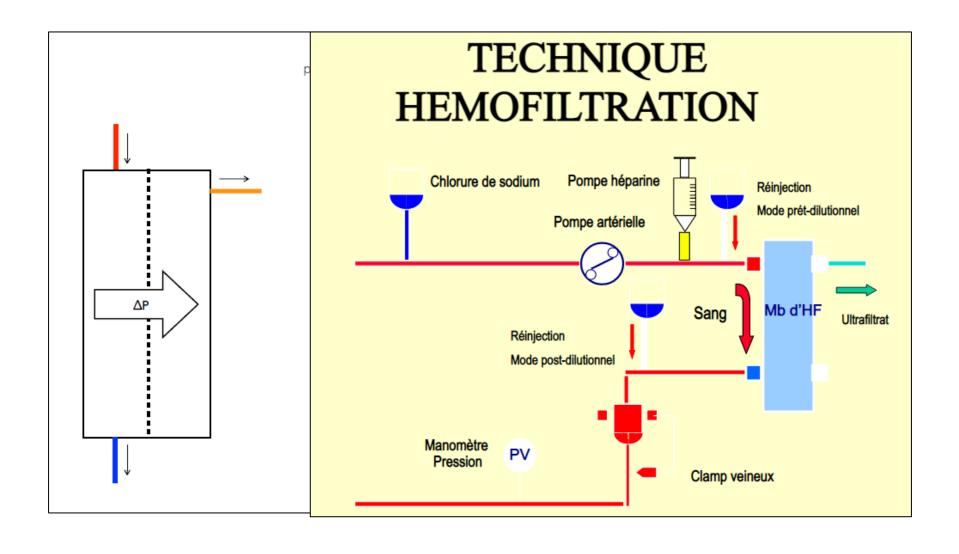
Thibaut Girardot et al, Seminars in Nephrology 2019

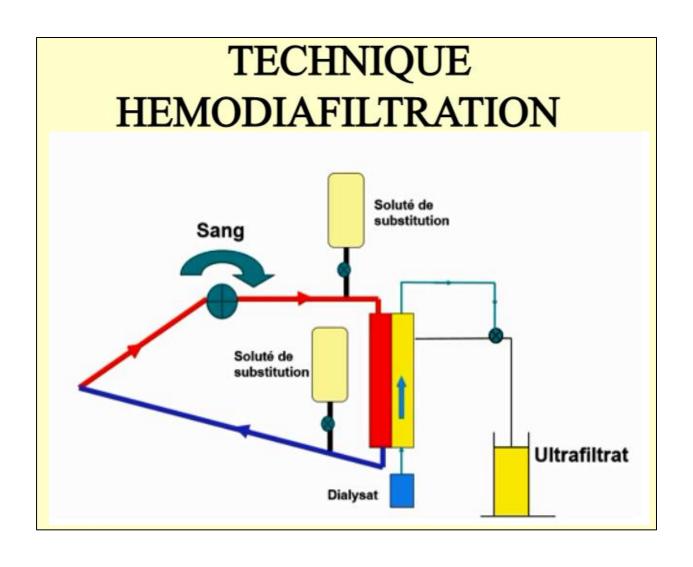
EER POUR SUPPLÉANCE DE LA DÉFAILLANCE RENALE ASSOCIÉE AU SEPSIS

SA-AKI

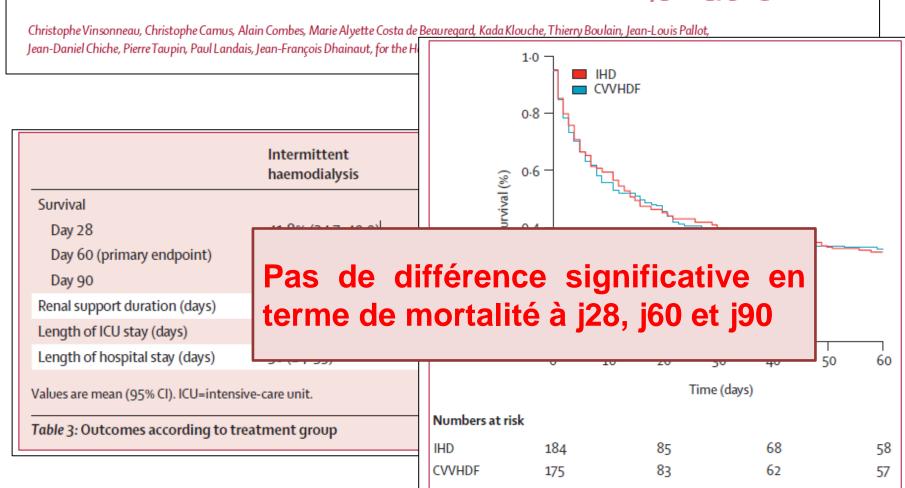

RRT FOR SA-AKI / QUELLE MODALITÉ ??


Modalité : Continue vs intermittente?


Convection vs Diffusion?


Timing précoce ou tardive ?

Dose de dialyse?


Continuous venovenous haemodiafiltration versus intermittent haemodialysis for acute renal failure in patients with multiple-organ dysfunction syndrome: a multicentre randomised trial

Lancet 2006; 368: 379-85

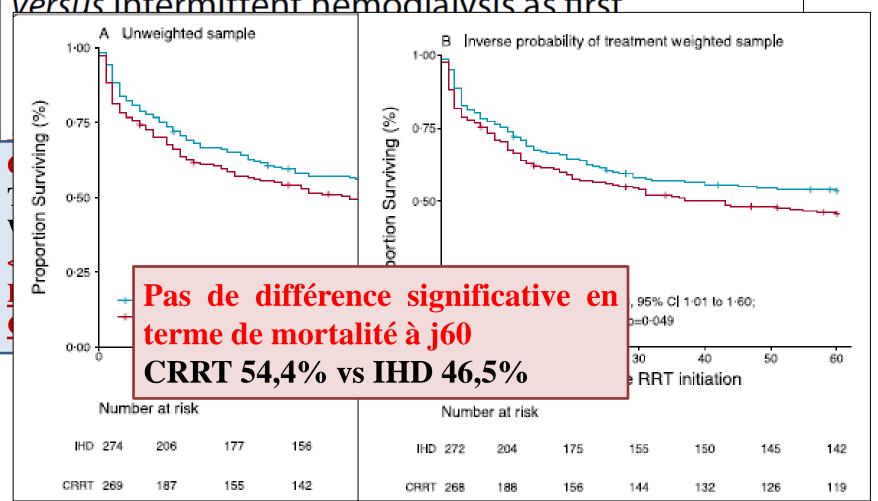
	Intermitte haemodia (n=184)		ာ Boulain, Jean-Louis Pallot,		
Age (years) Weight (kg) Sex	65 (63 79 (76		Intermittent haemodialysis	Continuous venovenous haemodiafiltration	
Male Female	132 (72 52 (28	Duration of sessions (h)	5.2 (5.1–5.3)	continuous	
Reason for admission Medical	134 (73	Blood flow (mL per min)	278 (275–281)	146 (145–147)	
Surgical Previous health status	50 (27	Dialysate flow* Ultrafiltration flow (mL per h)	500	1099 (1068–1128) 1278 (1255–1301)	
No or moderate limitation Serious limitation or bedridden	106 (58 78 (43	Net ultrafiltration† (mL per day)	2213 (2141-2285)	2107 (2011–2203)	
SAPS II score LOD score	64 (6: 10 (9	Mean urea (mmol/L)	15.7 (7.5)	14.8 (9.1)	
Catecholamine	158 (86%)				
Mechanical ventilation Delayed ARF	174 (95%) 123 (67%)				
Median time from admission to inclusion (days)	2	3			
Oliguria	101 (55%)	107 (61%)			
Presence of sepsis	127 (69%)	98 (56%)			
Urea (mmol/L)	31 (29-3	3) 29 (26–31)			
Serum creatinine (µmol/L)	432 (407-	457) 422 (381–464)			

Continuous venovenous haemodiafiltration versus intermittent haemodialysis for acute renal failure in patients with multiple-organ dysfunction syndrome: a multicentre randomised trial

Lancet 2006; 368: 379-85

Continuous venovenous haemodiafiltration versus intermittent haemodialysis for acute renal failure in patients with multiple-organ dysfunction syndrome: a multicentre randomised trial

Lancet 2006; 368: 379-85


Christophe Vinsonneau, Christophe Camus, Alain Combes, Marie Alyette Costa de Beauregard, Kada Klouche, Thierry Boulain, Jean-Louis Pallot, Jean-Daniel Chiche, Pierre Taupin, Paul Landais, Jean-François Dhainaut, for the Hemodiafe Study Group*

	Intermittent haemodialysis (n=:	Continuous venove 184) haemofiltration (n		_
Hypotension*	72 (39%)	61 (35%)	0-47	
Bleeding event†	13 (7%)	12 (7%)	0.89	
Thrombocytopenia	22 (129			
Hypoglycaemia	12 (7% Pas	de différenc	e significativ	ve en
Hypophosphataemia		e de toléranc		
Hypothermia	10 (5%	e de toleranc	e nemodynai	ilique
Arrhythmia	18 (10%)	9 (5%)	0.15	
Catheter infection	2 (1%)	3 (2%)	0.95	

Critical care 2022

Continuous renal replacement therapy <u>versus intermittent hemodialysis as first</u>

Initiation of continuous renal replacement therapy versus intermittent hemodialysis in critically ill patients with severe acute kidney injury: a secondary analysis of STARRT-AKI trial

Results: We identified 1590 trial participants who initially received CRRT and 606 who initially received

days compared with initial receipt of

IHD. The composite outcome of death or RRT dependence at 90-days occurred in 823 (51.8%) natients. who commenced CRRT and 329 (54. initiation of CRRT, as compared to IHD, was 0.90; 95% confidence interval (CI) 0.7 associated with a significant reduction in the weighting, initial receipt of CRRT was composite outcome of death or RRT dependence at 90-days.

predominantly driven by a lower risk or KKT dependence at 90-days (OK 0.01; 95% CI 0.39-0.94).

Conclusions: In critically ill patients with severe AKI, initiation of CRRT, as compared to IHD, was associated with a significant reduction in the composite outcome of death or RRT dependence at 90days.

LES RECOMMANDATIONS / TECHNIOUE

Réanimation

DOI 10.1007/s13546-014-0917-6

RÉFÉRENTIEL / GUIDELINES

2014

Les techniques d'EER, continues et intermittentes, peuvent être utilisées indifféremment, mais en tenant compte de la disponibilité de la technique et de l'expérience de l'équipe.

Accord fort

et de la Société francophone de dialyse (SFD)

Les techniques d'EER diffusives ou convectives peuvent être utilisées indifféremment, mais en tenant compte de la disponibilité de la technique et de l'expérience de l'équipe.

Accord fort

veny, David Osman, Ly van vong

LES RECOMMANDATIONS

Intensive Care Med (2021) 47:1181–1247 https://doi.org/10.1007/s00134-021-06506-y

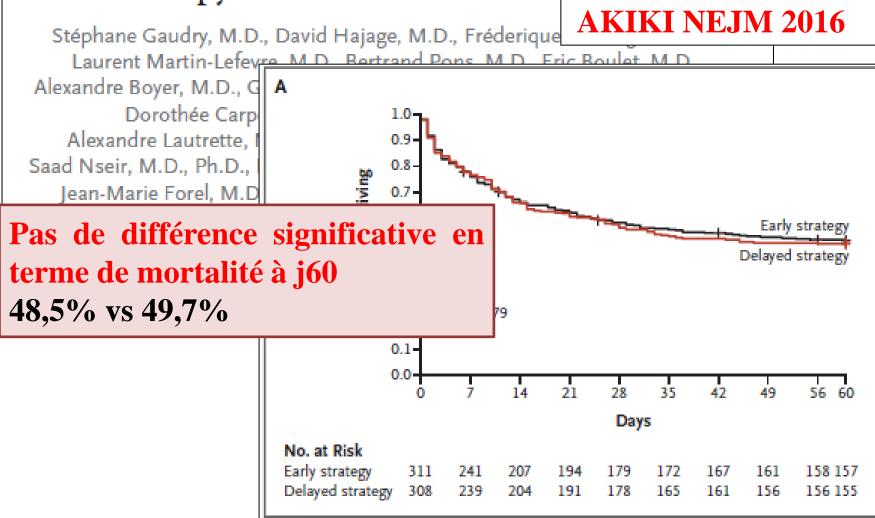
Intensive Care Med 2021

GUIDELINES

Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021

In adults with sepsis or septic shock and AKI who require renal replacement therapy, we suggest using either continuous or intermittent renal replacement therapy

Weak recommendation, low quality of evidence


Theodore Iwashyna³³, Shevin Jacob³⁴, Ruth Kleinpell³³, Michael Klompas^{30,37}, Younsuck Koh³⁰, Anand Kumar³³, Arthur Kwizera⁴⁰, Suzana Lobo⁴¹, Henry Masur⁴², Steven McGloughlin⁴³, Sangeeta Mehta⁴⁴, Yatin Mehta⁴⁵,

Initiation Strategies for Renal-Replacement Therapy in the Intensive Care Unit

Stéphane Gaudry, M.D., David Hajage, M.D., Fréderique AKIKI NEJM 2016

A I	Table 1. Characte	ristics of the Patients at Baseline.*		
Ale	Characteristic		Early Strategy (N=311)	Delayed Strategy (N = 308)
	Age — yr		64.8±14.2	67.4±13.4
Saa	Physiological sup	EARLY : KDIGO 3, 4 h après		
Phi	Invasive mech	· • • • • • • • • • • • • • • • • • • •	266 (86)	267 (87)
FIII	Vasopressor s	DELAYED: KDIGO 3, 57 h	265 (85)	263 (85)
	Sepsis status — r	après		
	Sepsis	Techniques: HDI ou CCRT	25 (8)	21 (7)
	Severe sepsis		16 (5)	19 (6)
	Septic shock		209 (67)	204 (66)
	Patients with oligi	ıria or anuria — no. (%)	202 (65)	191 (62)
	Serum creatinine	— mg/dl	3.25±1.40	3.20±1.32
	Blood urea nitroge	en — mg/dl	53±24	54±24
	Serum potassium	— mmol/liter	4.4±0.7	4.4±0.7
	Serum bicarbonat	e — mmol/liter	18.7±5.1	18.8±5.5
L	,		1	

Initiation Strategies for Renal-Replacement Therapy in the Intensive Care Unit

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

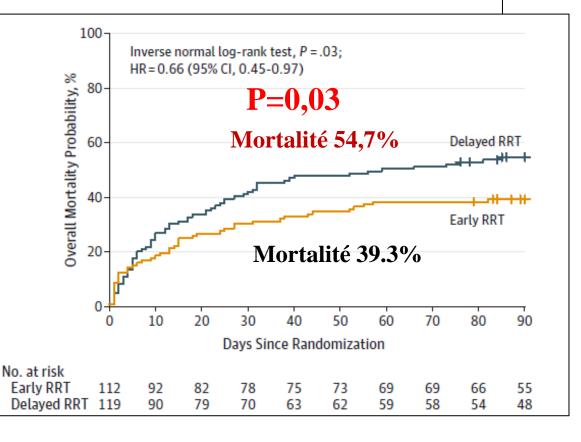
Effect of Early vs Delayed Initiation of Renal Replacement Therapy on Mortality in Critically III Patients

With Acute Kidney Injury

ELAIN JAMA 2016

The ELAIN Randomized Clinical Trial

Alexander Zarbock, MD; John A. Kellum, MD; Chrisi Hermann Pavenstädt, MD; Andreea Boanta, MD; Jo


EARLY:112 patients

KDIGO 2, 6 h après

DELAYED:119 patients

KDIGO 3, 25 h après

TECHNIQUE: CVVHDI

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

Effect of Early vs Delayed Initiation of Renal Replacement Therapy on Mortality in Critically III Pater ELAIN JAMA 2016 With Acute Kidney Injury The ELAIN Randomized Clinical Trial

Alexander Zarbock, MD; John A. Kellum, MD; Christoph Schmidt, MD; Hugo Van Aken, MD; Carola Wempe, PhD; Hermann Pavenstädt, MD; Andreea Boanta, MD; Joachim Gerß, PhD; Melanie Meersch, MD

Primary Outcome, No. (%) 90-d All-cause mortality Secondary Outcomes, No. (%)	Meilleure la fonctio dans le gro	n rénal	e à	j90	OR or HR (95% CI) HR: 0.66 (0.45 to 0.97)
Recovery of renal function at day 90 ^e					
Yes	60 (53.6)	46 (38.7)	.02	14.9	OR: 0.55
				(2.2 to 27.6)	(0.32 to 0.93) ¹

Timing of Renal-Replacement Therapy in Patients with Acute Kidney Injury and Sepsis

S.D. Barbar, R. Clere-Jehl, A. Bourredjem, R. He IDEAL ICU NEJM 2018

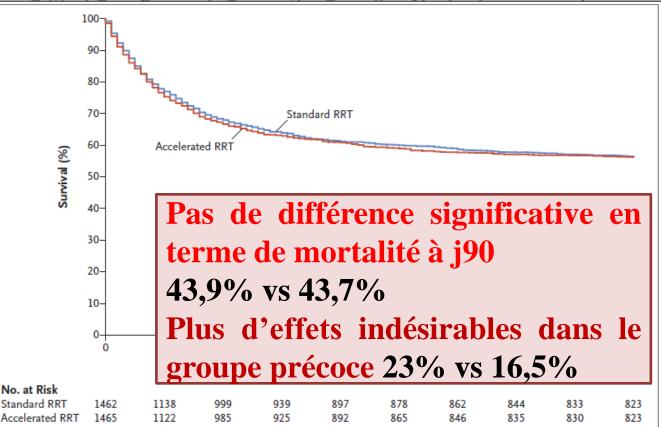
C. Lebert, J. Bohé, J. Badie, J.-P. Eraldi, J.-P. Rigaud, B. Levy, S. Siami,

G. Louis, L. Bouadma, J.-M. Constantin, E. Mercier, K. Klouche, D. du Cheyron,

G. Piton, D. Annane, S. J. C. Schwebel, L. Chimot, P. B. Louart, R. Trusson for the IDEAL-ICU Trial Inve

EARLY:246 patients
KDIGO 3, 12 h après
DELAYED:242 patients
indication clinique ou
après 48 h si non
résolution de l'IRA

Timing of Initiation of Renal-Replacement Therapy in Acute Kidney Injury


STARRT AKI NEJM 2020

The STARRT-AKI Investigators, for the Canadian the Australian and New Zealand Intensive Care Society Clinical Trials Group,

the United Kingo Trials

EARLY: KDIGO dans les 12 h

DELAYED: atte jusqu'à k>6, pH surcharge hydrio AKI >72 h l'IRA 44% des patients choc septique

Delayed versus early initiation of renal replacement therapy for severe acute kidney injury: <u>a systematic review</u> and individual patient data meta-analysis of randomised clinical

	Delayed R (n=946)	RT group	Early RRT group (n=933)			LANCET	2020
A	28-day mortality	, n/N (%)				Risk ratio (95% CI)	Weight (%
	Delayed RRT	Early RRT	N	IS			
Combes et al, 2015	10/22 (45%)	11/20 (55%)	· •	<u> </u>		0.83 (0.45-1.51)	3.1
Wald et al, 2015	15/52 (29%)	13/48 (27%)	-	-		1.07 (0.57-2.00)	2.9
Gaudry et al, 2016	134/308 (44%)	129/308 (42%	⁶)⊢			1.04 (0.87-1.25)	34-2
Barbar et al, 2018 Lumlertgul et al, 2018 Srisawat et al, 2018 Geri et al, 2019 Total Random-effects one-step model Random-effects two-step model I^2 =0.0% $τ^2$ =0.0	48/119 (40%) 102/241 (42%) 35/60 (58%) 9/18 (50%) 13/17 (76%) 366/837 (44%)	34/112 (30% 111/245 (45% 36/58 (62%) 10/20 (50%) 11/16 (69%) 355/827 (43%	0.8	; - ; - ; - ; -			— Early RRT — Delayed RR
			· c	<u> </u>		Hazard ratio 1-01 (9	
				Ó	7	14	21 28
В			Number at risk			Days	
_	28-day mortality	, n/N (%)	Early RRT	831	636		(09 474
	Delayed RRT	Early RRT	Delayed RRT	840	645	557 5	517 478

Comparison of two delayed strategies for renal replacement therapy initiation for severe acute kidney injury (AKIKI 2): a multicentre, open-label, randomised, controlled trial

Stéphane Gaudry, David Hajage, Laurent Martin-L Béatrice La Combe, Bertrand Pons, Nicolas de Prost Guillaume Chevrel, Julien Bohé, Elisabeth Coupez, I Eric Boulet, Karim Lakhal, Nadia Aissaoui, Steven C Karim Asehnoune, Guillaume Geri, Kada Klouche, C Jean-Damien Ricard*, Jean-Pierre Quenot†, Didier L

DELAYED: KDIGO 3 urée<40, oligurie>72 h MORE DELAYED: attendre jusqu'à hyperK, urée>50, acidose métab, surcharge hydrique

	Delayed RRT strategy group (n=137)	More-delayed RRT strategy group (n=141)	p value
RRT-free days			
All patients	12 (0-25)	10 (0-24)	0-93
Survivors	24 (15–27)	23 (14-28)	0.54
Number of patients who actually received RRT	134 (98%)	111 (79%)	<0.0001
Time from randomisation to RRT, h	3 (2-5)	33 (24-60)	<0.0001
Number of RRT sessions*	5 (2-10)	5 (2-10)	0.75
Duration of RRT days*	5 (2-10)	5 (2-10)	0.75
Modality, first day*			
Intermittent RRT	81 (60%)	64 (58%)	0.53
Continuous RRT	52 (39%)	44 (40%)	
Both modalities	1 (1%)	3 (3%)	
Mortality			
At day 28	52 (38%)	63 (45%)	0-26
At day 60	60 (44%)	77 (55%)	0.071
At ICU discharge	55 (40%)	66 (47%)	0.26
At hospital discharge	61 (45%)	75 (53%)	0.15
RRT dependence‡			
At day 28	13 (16)	7 (11)	0-33
At day 60	3 (4)	1(2)	0.62

LES RECOMMANDATIONS / TIMING

Réanimation DOI 10.1007/s13546-014-0917-6

RÉFÉRENTIEL / GUIDELINES

2014

Il faut considérer « précoce » l'initiation d'une EER, au stade KDIGO 2 ou dans les 24 heures suivant l'apparition d'une insuffisance rénale aiguë dont la réversibilité semble peu probable.

(Avis d'experts) Accord faible

et de la Société francophone de dialyse (SFD)

Il faut considérer « tardive » l'initiation de l'EER à plus de 48 heures de la survenue d'une insuffisance rénale aiguë KDIGO 3 ou lors de l'apparition d'une situation mettant en jeu le pronostic vital et en rapport avec l'insuffisance rénale aiguë.

(Avis d'experts) Accord faible

LES RECOMMANDATIONS / TIMING

Réanimation DOI 10.1007/s13546-014-0917-6

RÉFÉRENTIEL / GUIDELINES

2014

Il faut initier sans délai l'EER dans les situations mettant en jeu le pronostic vital (hyperkaliémie, acidose métabolique, syndrome de lyse, oedème pulmonaire réfractaire au traitement médical).

(Avis d'experts) Accord fort

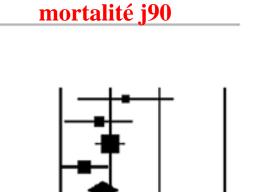
et de la Société francophone de dialyse (SFD)

Les données disponibles sont insuffisantes pour définir le délai optimal avant instauration de l'EER en dehors des situations mettant en jeu le pronostic vital.

(Avis d'experts) Accord fort

Open Access Research

BMJ Open High-dose versus low-dose haemofiltration for the treatment of critically ill patients with acute kidney injury: an updated systematic review and meta-analysis


2017

8 st HV SV <u>Ma</u>

Per

pat

Study name	Statistics for each study						
	Odds ratio	Lower limit	Upper limit	Z-Value	p-Value		
Joannes-Boyau (2013)	1.24	0.63	2.43	0.63	0.53		
Zhang (2012)	0.85	0.53	1.38	-0.64	0.52		
Bellomo (2009)	1.00	0.81	1.22	-0.03	0.97		
Ronco (2000)	0.70	0.50	0.97	-2.12	0.03		
Pooled	0.90	0.73	1.11	-1.00	0.32		

Pas de difference

Heterogeneity test: Q = 4.10, P = 0.25, $I^2 = 26.7\%$

Favors high-dose

0.2

Favors low-dose

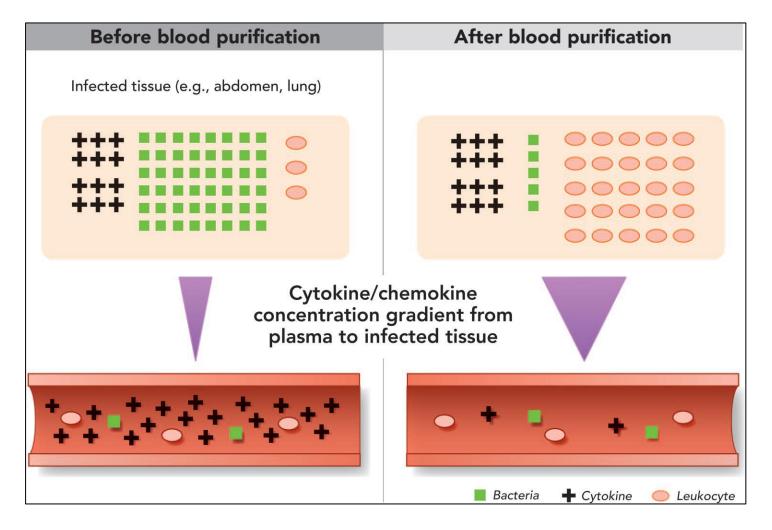
LES RECOMMANDATIONS / DOSE DE DIALYSE

Réanimation DOI 10.1007/s13546-014-0917-6

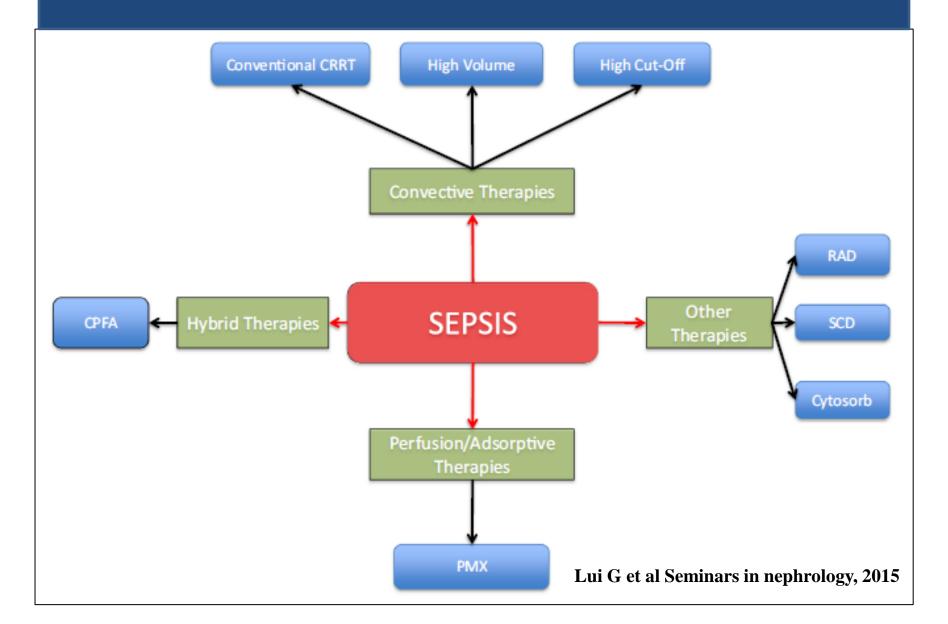
RÉFÉRENTIEL / GUIDELINES

2014

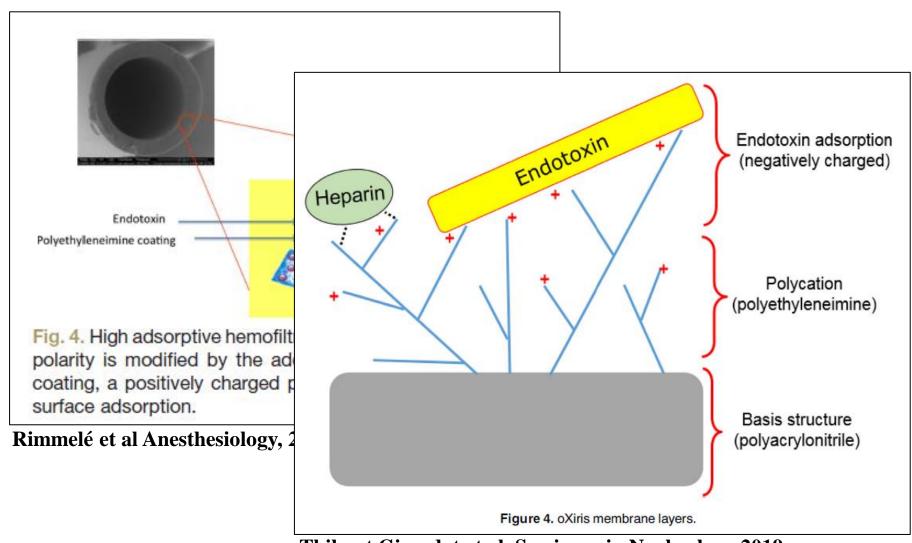
En épuration extrarénale intermittente il faut probablement que la dose de dialyse minimale délivrée soit de


- 1) trois séances par semaine de quatre heures au moins avec un débit sang > 200 ml/min et un débit dialysat > 500 ml/min,
- 2) l'obtention d'un Kt/V > 3.9 par semaine,
- 3) le maintien d'une concentration en urée prédialytique de 20–25 mmol/l. Accord fort

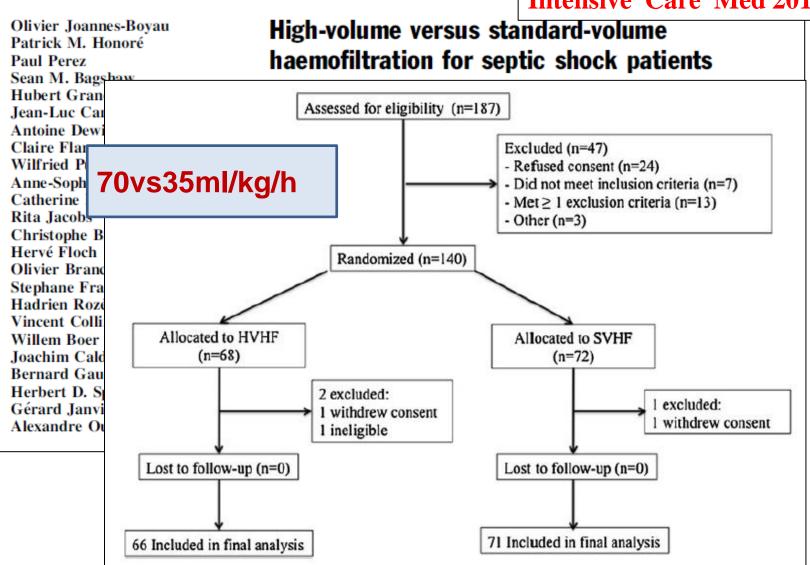
En épuration extrarénale continue, il faut probablement que la dose de dialyse minimale délivrée soit de 20–25 ml/kg par heure d'effluent, obtenus par filtration et/ou diffusion.


Accord fort

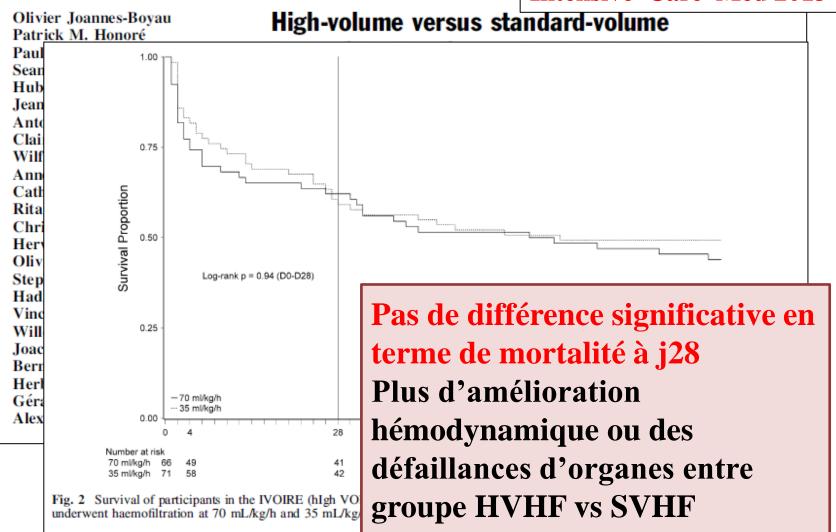
EER ET PURIFICATION SANGUINE AU COURS DU CHOC SEPTIQUE AU DELÀ DE LA SUPPLÉANCE RÉNALE!


RRT FOR BLOOD PURIFICATION

RRT FOR BLOOD PURIFICATION



RRT FOR BLOOD PURIFICATION



Thibaut Girardot et al, Seminars in Nephrology 2019

IVOIRE STUDY Intensive Care Med 2013

IVOIRE STUDY Intensive Care Med 2013

RESEARCH Open Access

2014

High-volume hemofiltration for septic acute kidney injury: a systematic review and meta-analysis

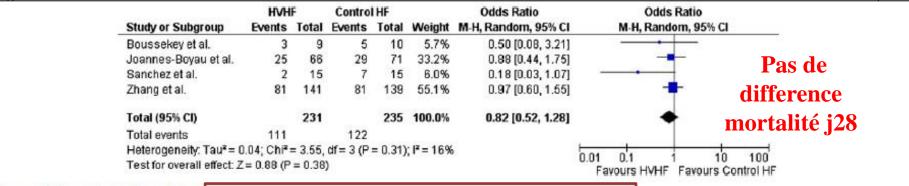


Figure 2 Forest plot for odds of

Plus d'effets indésirables: hypophosphatémie et hypokalémie groupe HVHF

The therapeutic effect of high-volume hemofiltration on sepsis: a systematic review and meta-analysis

2020

Fan Yin1, Fang Zhang1, Shijian Liu2, Botao Ning1

¹Department of Pediatric Intensive Care Unit, ²Clinical Research Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China

Contributions: (I) Conception and design: B Ning, S Liu; (II) Administrative support: None; (III) Provision of study materials or patients: F Yin, F Zhang; (IV) Collection and assembly of data: F Yin, S Liu; (V) Data analysis and interpretation: F Yin; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Botao Ning; Shijian Liu. Department of Pediatric Intensive Care Unit, Shanghai Children's Medical Center, Shanghai Jiao Tong

	HVH	F	CVH	F		Risk Ratio			Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Fixed, 95% CI		I	V. Fixed, 95% (CI	
Boussekey N 2008	3	9	5	10	10.8%	0.67 [0.22, 2.03]		_			
Chung KK 2017	5	14	5	23	12.2%	1.64 [0.58, 4.68]			-		
Joannes-Boyau O 2013	25	66	29	71	77.0%	0.93 [0.61, 1.41]			-		
Total (95% CI)		89		104	100.0%	0.96 [0.67, 1.38]			•		
Total events	33		39								
Heterogeneity: Chi*= 1.45	5, df = 2 (P)	r = 0.48	3); F = 0%				0.04			10	4.00
Test for overall effect: $Z = 0.22$ (P = 0.83)							0.01 Fav	o.1 ours [experin	nental] Favou	10 rs [control]	100

Figure 4 Forest plot of comparison in relative risk of mortality.

Pas de différence significative

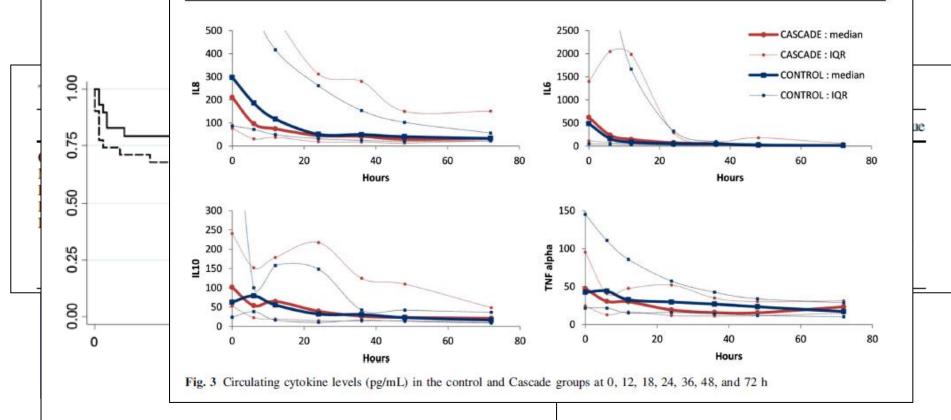
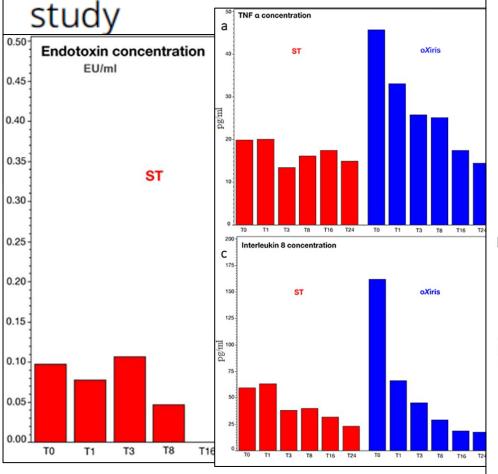
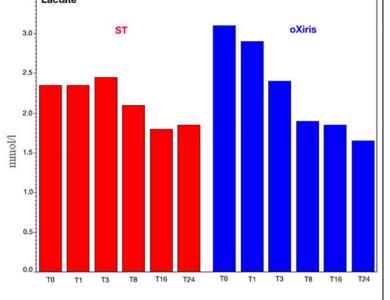
en terme de mortalité

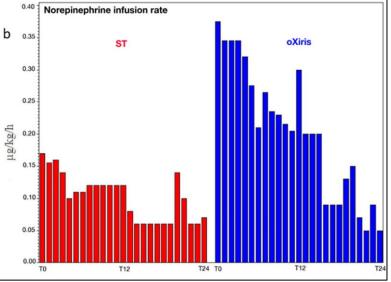
SEVEN-DAY PROFILE PUBLICATION

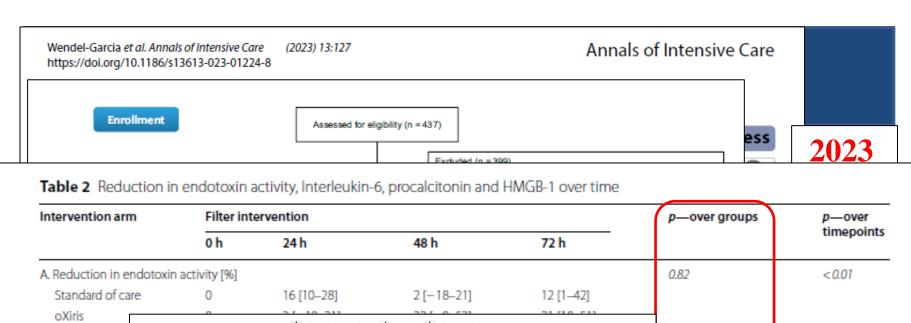
Jean-Pierre Quenot Christine Binquet Christophe Vinsonneau Saber-David Barbar Sandrine Vinault

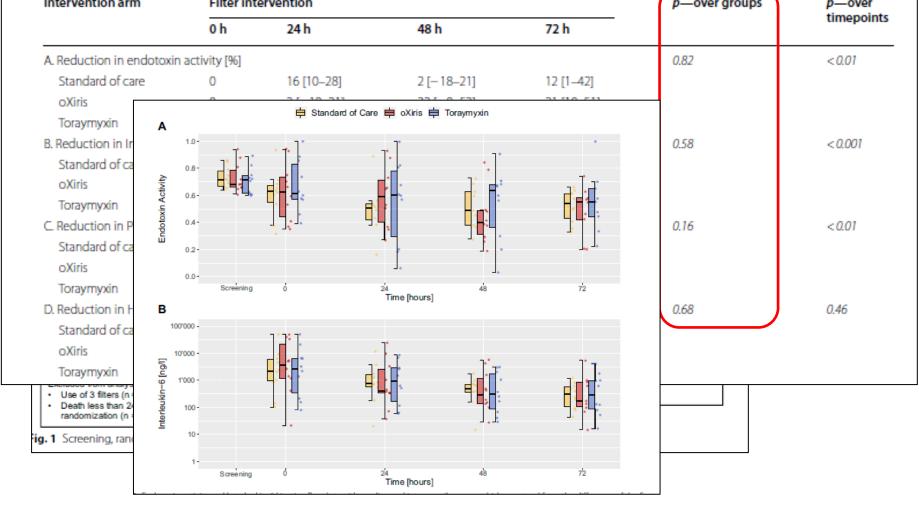
Very high volume hemofiltration with the Cascade system in septic shock patients

2015


Fig. 2 Cumulative survival probabilities in each group at 90 days


Endotoxin and cytokine reducing properties


of the oXiris membrane in pashock: A randomized crosso

Wang et al. Critical Care (2023) 27:275 Critical Care

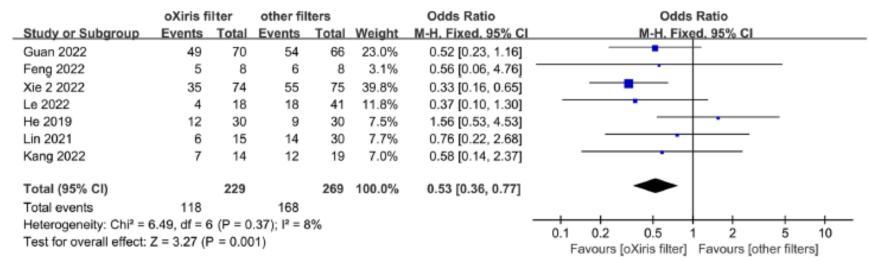


Fig. 3. 28-day mortality (adopting Xie et al.'s data after IPTW)

oXiris filter			er	other filters				Mean Difference	Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI		
Shum 2013	11.28	12.83	6	12.43	13.39	24	0.3%	-1.15 [-12.73, 10.43]	•		
Zang 2022	8.68	5.26	22	9.02	4.44	22	5.1%	-0.34 [-3.22, 2.54]			
Guan 2022	23.02	29.46	70	21.03	24.79	66	0.5%	1.99 [-7.14, 11.12]	-		
Feng 2022	8.83	15.46	8	9.9	10.67	8	0.3%	-1.07 [-14.09, 11.95]	•		
Zhai 2021	8.17	1.75	23	10.21	2.18	30	37.9%	-2.04 [-3.10, -0.98]	-		
Xie 2 2022	9.55	6.73	74	10.11	13.1	75	3.8%	-0.56 [-3.90, 2.78]	-		
Le 2022	8.6	2.9	18	11.7	3.9	41	13.2%	-3.10 [-4.89, -1.31]			
He 2019	8.72	2.86	30	9.45	3.37	30	17.0%	-0.73 [-2.31, 0.85]			
Yu 2020	8.6	2.5	20	11.2	2.2	25	21.9%	-2.60 [-3.99, -1.21]			
Total (95% CI)			271			321	100.0%	-1.91 [-2.56, -1.26]	◆		
Heterogeneity: Chi ² =	7.33, df	= 8 (P =	0.50);	I ² = 0%				_			
Test for overall effect:									-10 -5 0 5 10 Favours [oXiris filter] Favours [other filters]		

Fig. 4 The length of ICU stay (adopting Xie et al's data after IPTW)

LES RECOMMANDATIONS / BLOOD PURIFICATION

Réanimation

DOI 10.1007/s13546-014-0917-6

RÉFÉRENTIEL / GUIDELINES

2014

Épuration extrarénale en réanimation adulte et pédiatrique. Recommandations formalisées d'experts sous l'égide

En épuration extrarénale continue, il ne faut pas, sur la seule présence d'un sepsis, intensifier la dose d'épuration.

Accord fort

Kenai replacement therapy Adult and Children Intensive Care Unit.

Société de réanimation de langue française. Experts Recommandations

Christophe Vinsonneau, Emma Allain-Launay, Clarisse Blayau, Michael Darmon, Damien du Cheyron, Théophile Gaillot, Patrick Honoré, Étienne Javouhey, Thierry Krummel, Annie Lahoche, Matthieu Legrand, Serge Le Tacon, Mehran Monchi, Christophe Ridel, René Robert, Frédérique Schortgen, Bertrand Souweine, Patrick Vaillant, Lionel Velly, David Osman, Ly Van Vong

LES RECOMMANDATIONS / BLOOD PURIFICATION

Intensive Care Med (2021) 47:1181–1247 https://doi.org/10.1007/s00134-021-06506-y **Intensive Care Med 2021**

GUIDELINES

Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021

- There is <u>insufficient evidence to make a recommendation on the</u> use of other blood purification techniques

Theodore Iwashynass, Shevin Jacobss, Ruth Kleinpellss, Michael Klompassss, Younsuck Kohss, Anand Kumarss, Arthur Kwizera⁴⁰, Suzana Lobo⁴¹, Henry Masur⁴², Steven McGloughlin⁴³, Sangeeta Mehta⁴⁴, Yatin Mehta⁴⁵,

Conclusion

Les données de la littérature sur l'EER comme moyen de suppléance de la défaillance rénale au cours du choc septique (SA-AKI) sont insuffisante pour recommander l'une ou l'autre modalité et définir le timing optimal

- Continue vs intermittente ????
- Précoce vs tardive ?????

Il faut tenir compte de la disponibilité de la technique et de l'expérience de l'équipe.

Conclusion

Les arguments en faveur ou contre l'EER comme moyen de purification sanguine pour la modulation de l'inflammation ne sont pas suffisamment importants

Pas de recommandations claires a ce jour !!

Il faut continuer la recherche...

