



## Asynchronie patientventilateur : impact sur le sevrage de la ventilation mécanique

**Mohamed Boussarsar,** MD, Professor Medical Intensive Care. Sousse

hamadi.boussarsar@gmail.com Congrès ATR 28-30 Novembre 2024



# **Conflict of Interest**

Head Medical Intensive Care Unit

**Farhat Hached Hospital Medical Committee President Quality Steering Committee President** 





**Research Laboratory N° LR12SP09. Heart Failure** PLOSOne Academic Editor Editorial Board

> ERC IORG **Ethics and Research Committee** IORG 007439 President 007439

## IAAS

**AI Applied to Healthcare Postgraduate Certificate** NIV Master Co-Founder and Coordinator NIV AC **ICCPC Conference Founder and President ICCPC** 



**Medical Artificial Intelligence Association Co-founder Member and President** 

# **Conflict of Interest**

Head Medical Intensive Care Unit



**Farhat Hached Hospital Medical Committee President Quality Steering Committee President** 



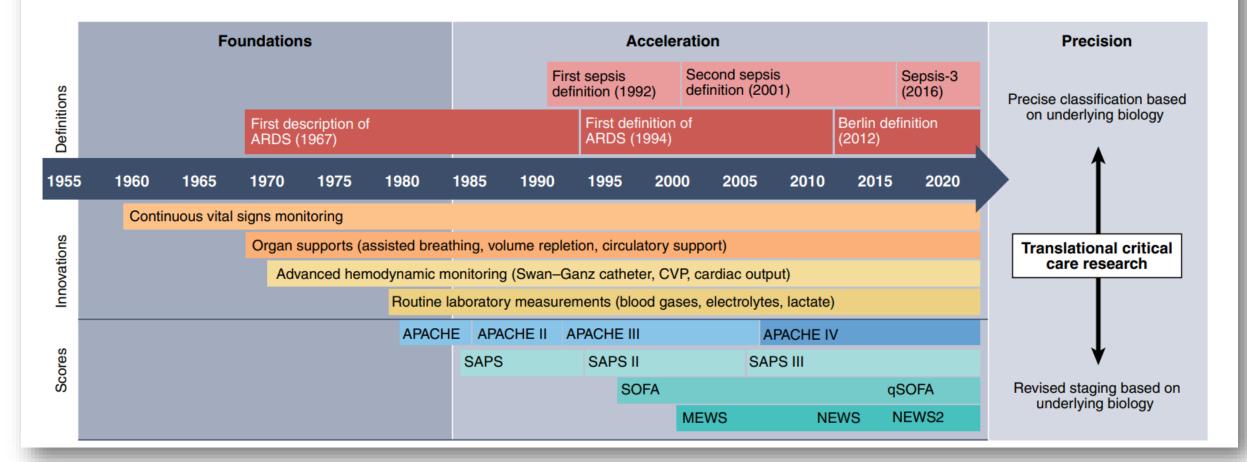
**Research Laboratory N° LR12SP09. Heart Failure** PLOSOne Academic Editor Editorial Board

> **ERC IORG Ethics and Research Committee** IORG 007439 President 007439

> > IAAS

**AI Applied to Healthcare Postgraduate Certificate** NIV Master Co-Founder and Coordinator INIV AC **ICCPC Conference Founder and President ICCPC** 




**Medical Artificial Intelligence Association Co-founder Member and President** 

## **Precision medicine**

## **Redefining critical illness**

## PERSPECTIVE

**NATURE MEDICINE** 



## \_

Check for updates

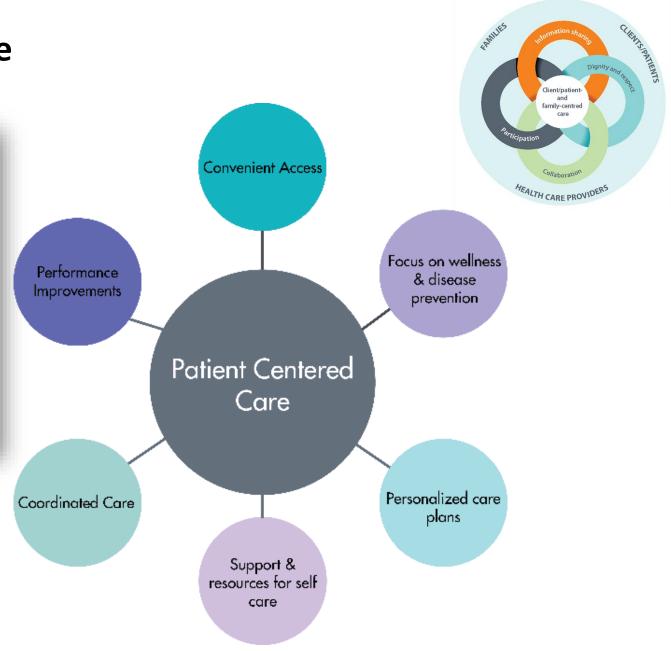
**PERSPECTIVE** https://doi.org/10.1038/s41591-022-01843-x

## **Disease vs Patient-centered Care**



#### **HHS Public Access**

Author manuscript JAMA Cardiol. Author manuscript; available in PMC 2020 February 02.


Published in final edited form as: JAMA Cardiol. 2016 April 01; 1(1): 9–10. doi:10.1001/jamacardio.2015.0248.

#### Moving from Disease-Centered to Patient Goals-Directed Care for Patients with Multiple Chronic Conditions: Patient Value-Based Care

Mary E. Tinetti, MD<sup>1</sup>, Aanand D. Naik, MD<sup>2</sup>, John A. Dodson, MD<sup>3</sup> <sup>1</sup>Department of Medicine, Yale School of Medicine, New Haven, Connecticut; Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut

<sup>2</sup>Houston Center for Innovations in Quality, Effectiveness and Safety at the Michael E. DeBakey VA Medical Center and Department of Medicine, Baylor College of Medicine, Houston, Texas

 $^{3}\mbox{Departments}$  of Medicine and Population Health, Langone Medical Center, New York University, New York, New York



## Search for treatable traits



REVIEW TREATABLE TRAITS IN CHRONIC AIRWAY DISEASES

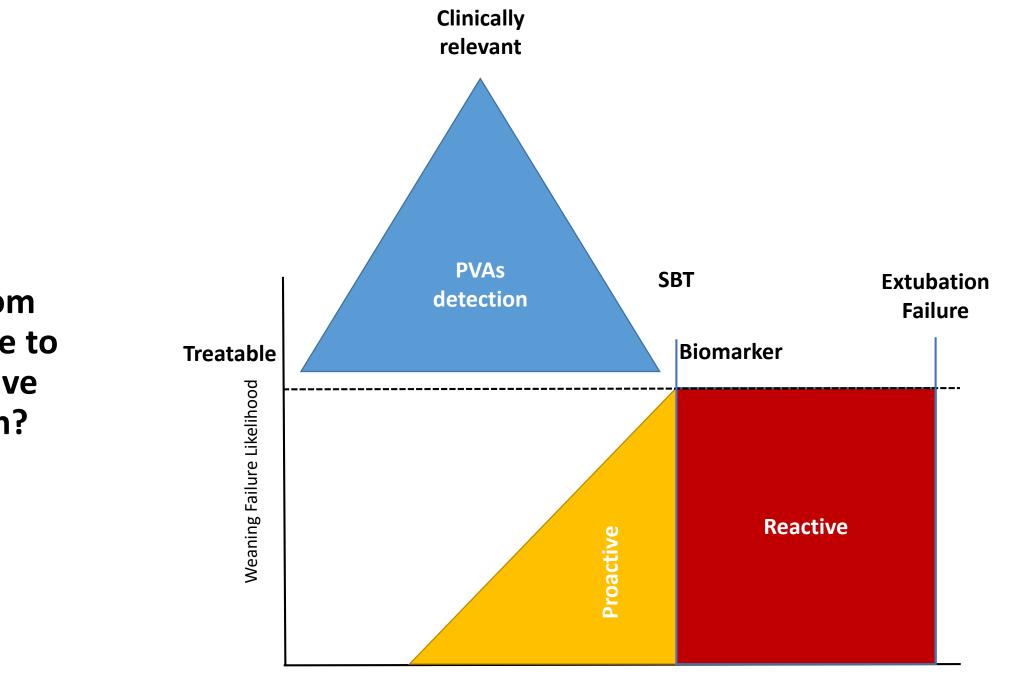


Treatable traits: a new paradigm for 21st century management of chronic airway diseases: Treatable Traits Down Under International Workshop report

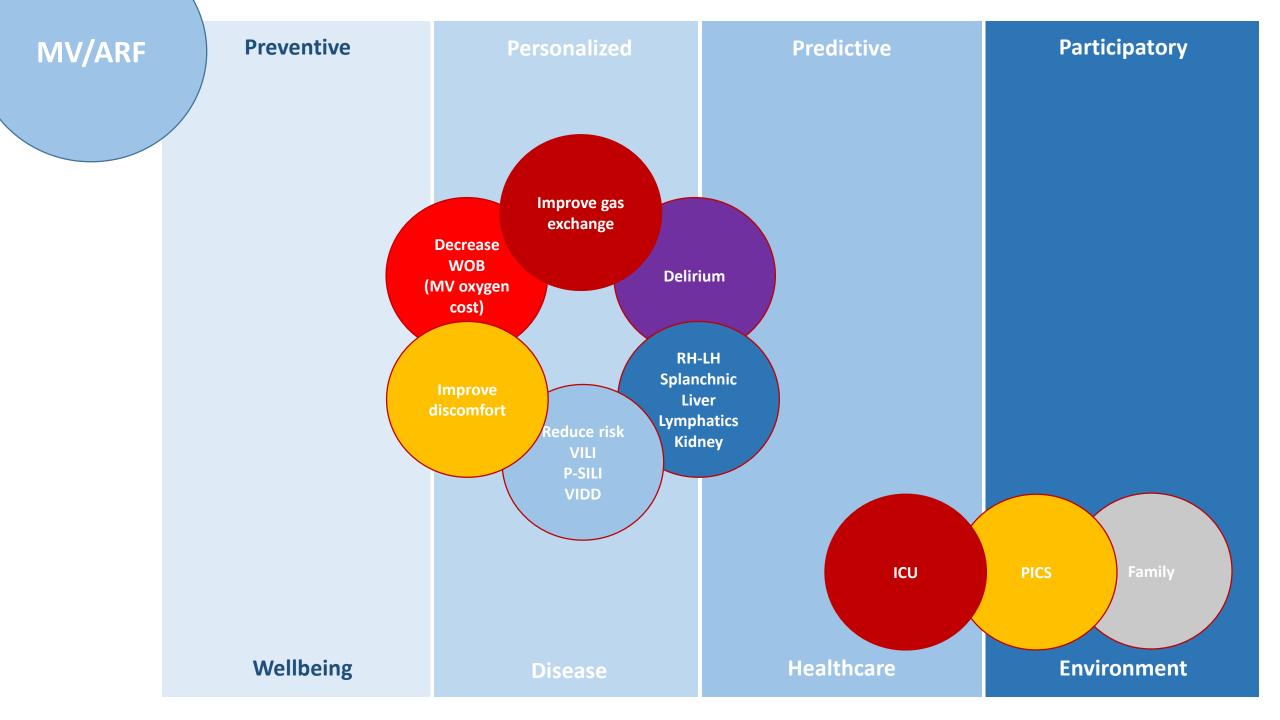
Vanessa M. McDonald<sup>1,2</sup>, James Fingleton <sup>©3,4</sup>, Alvar Agusti<sup>5</sup>, Sarah A. Hiles<sup>1</sup>, Vanessa L. Clark<sup>1</sup>, Anne E. Holland <sup>©6</sup>, Guy B. Marks<sup>7,8</sup>, Philip P. Bardin<sup>9</sup>, Richard Beasley <sup>©3,4</sup>, Ian D. Pavord<sup>10</sup>, Peter A.B. Wark<sup>1,2</sup> and Peter G. Gibson <sup>©1,2</sup> on behalf of the participants of the Treatable Traits Down Under International Workshop



## Search for treatable traits


| Domain                      | Essential | Clinical application                                                                                                                                                                                                                                                                                                                                        | Research opportunity                                                                                                                                                                                                                                                                                    |
|-----------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clinically relevant         | Yes       | Trait predicts/associates with clinically<br>important outcomes.                                                                                                                                                                                                                                                                                            | Identify and/or quantify clinical relevance.                                                                                                                                                                                                                                                            |
| Trait identification marker | Yes       | Identifies the presence of a trait. Appreciation<br>of the measurement characteristics of the test<br>( <i>i.e.</i> sensitivity, specificity) is required for<br>optimum use. A test with high specificity is<br>required to "rule in" the presence of a trait.<br>A highly sensitive test can be used to screen,<br>or "rule out" the presence of a trait. | New markers at lower cost or improved feasibility.<br>Novel diagnostics, <i>e.g.</i> artificial intelligence-based<br>probabilities derived from composite molecular<br>signatures. Mechanism-oriented research to yield<br>better molecular diagnostics for more precise<br>identification of subsets. |
| Treatable                   | Yes       | Trait is responsive to a specific targeted<br>therapy. Established <i>via</i> randomised<br>controlled trials.                                                                                                                                                                                                                                              | Discovery science to identify new treatment for<br>"untreatable" traits. Implementation science to<br>define best way to treat the traits in clinical practice.                                                                                                                                         |
|                             |           |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                         |
|                             |           |                                                                                                                                                                                                                                                                                                                                                             | Treatable                                                                                                                                                                                                                                                                                               |

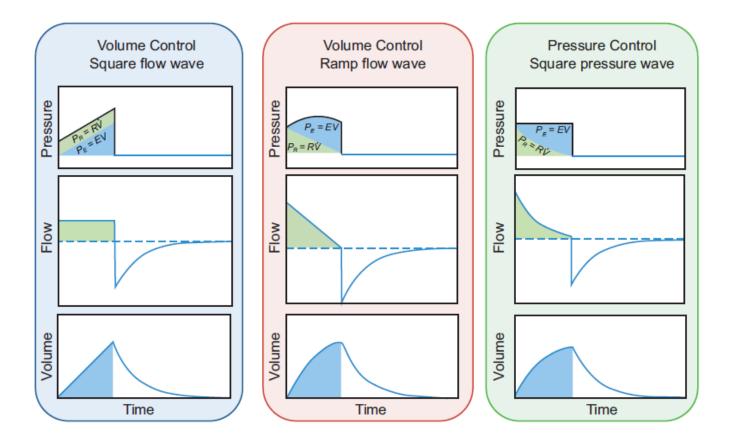
Biomarker


## Patient-Ventilator Asynchrony:

## A Treatable Trait, Signal in the Noise, or Icing on the Cake?

| NIH National Libra<br>National Center for Bio | ary of Medicine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | og in                                   |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Pub                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a <b>rch</b><br>Iser Guide              |
|                                               | SaveEmailSend toSort by:Publication date $\downarrow$ $\downarrow$ Display option                                                                                                                                                                                                                                                                                                                                                                                                                                 | ons 🌣                                   |
| MY CUSTOM FILTERS                             | 519 results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | > >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> |
| RESULTS BY YEAR                               | <ul> <li>Critical care nurses' knowledge and attitudes towards using ventilator wavef</li> <li>monitoring to detect patient-ventilator asynchrony: A cross-sectional online</li> <li>Cite</li> <li>Survey.</li> <li>Mohamed FKI, Ghoneam MA, Abdelaliem SMF, Abdelgawad ME.</li> <li>Nurs Crit Care. 2024 Nov;29(6):1580-1590. doi: 10.1111/nicc.13144. Epub 2024 Aug 28.</li> <li>PMID: 39198041</li> <li>BACKGROUND: Patient-ventilator asynchrony (PVA) is a condition that commonly affects patien</li> </ul> | ne<br>ts who                            |




Can we move from a reactive to a proactive approach?

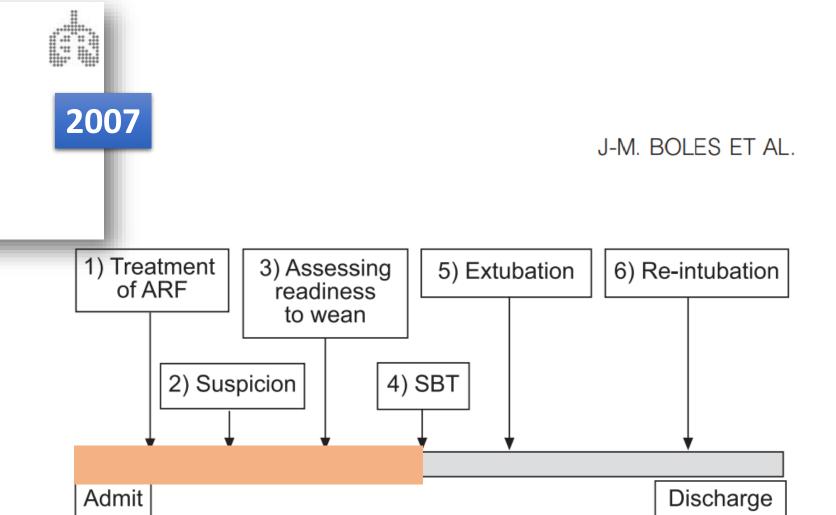


# Equation of motion

**P**tot = **E**tot.**V** + **R**tot.**V'** + **I**.**V''** 

Ptot = Pmus + Pvm




**TASK FORCE** 

#### Weaning from mechanical ventilation

J-M. Boles\*, J. Bion<sup>#</sup>, A. Connors<sup>¶</sup>, M. Herridge<sup>+</sup>, B. Marsh<sup>§</sup>, C. Melot<sup>/</sup>, R. Pearl\*\*, H. Silverman<sup>##</sup>, M. Stanchina<sup>¶¶</sup>, A. Vieillard-Baron<sup>++</sup>, T. Welte<sup>§§</sup>

Statement of the Sixth International Consensus Conference on Intensive Care Medicine

Organised jointly by the European Respiratory Society (ERS), the American Thoracic Society (ATS), the European Society of Intensive Care Medicine (ESICM), the Society of Critical Care Medicine (SCCM) and the Société de Réanimation de Langue Française (SRLF), and approved by the ERS Executive Committee, February 2007



**FIGURE 1.** Schematic representation of the different stages occurring in a mechanically ventilated patient. ARF: acute respiratory failure; SBT: spontaneous breathing test.

#### WEANING FROM MECHANICAL VENTILATION

#### J-M. BOLES ET AL.

| TABLE 3        | Classification of patients account | rding to the weaning process                                                                                                               | 200      |  |
|----------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------|--|
| Group/catego   | ry                                 | Definition                                                                                                                                 | 2007     |  |
| Simple weani   | ng                                 | Patients who proceed from initiation of weaning to successful extubation on the attempt without difficulty                                 | he first |  |
| Difficult wean | ing                                | Patients who fail initial weaning and require up to three SBT or as long as 7 of<br>from the first SBT to achieve successful weaning       | lays     |  |
| Prolonged we   | aning                              | Patients who fail at least three weaning attempts or require >7 days of weaning attempts or require >7 days of weaning after the first SBT | ng       |  |

SBT: spontaneous breathing trial.

| TABLE 5        | Considerations for a | ssessing readiness to wean                                                                                                                                                          |
|----------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clinical asses | sment                | Adequate cough Absence of excessive tracheobronchial secretion Resolution of disease acute phase for which the patient was intubated                                                |
| Objective mea  | asurements           | Clinical stability<br>Stable cardiovascular status ( <i>i.e. f</i> c ≤140 beats·min <sup>-1</sup> , systolic BP 90–160 mmHg, no or minimal vasopressors)<br>Stable metabolic status |
|                |                      | Adequate oxygenation<br>$S_{a,O_2} > 90\%$ on $\leq F_{I,O_2} 0.4$ (or $P_{a,O_2}/F_{I,O_2} \ge 150$ mmHg)<br>PEEP $\leq 8$ cmH <sub>2</sub> O                                      |
|                |                      | Adequate pulmonary function<br>$f_{\rm R} \leq 35 \text{ breaths} \cdot \text{min}^{-1}$<br>MIP $\leq -2025 \text{ cmH}_2\text{O}$                                                  |
|                |                      | $VT > 5 \text{ mL} \cdot \text{kg}^{-1}$<br>$VC > 10 \text{ mL} \cdot \text{kg}^{-1}$<br>$f_R/VT < 105 \text{ breaths} \cdot \text{min}^{-1} \cdot \text{L}^{-1}$                   |
|                |                      | No significant respiratory acidosis<br>Adequate mentation<br>No sedation or adequate mentation on sedation (or stable neurologic patient)                                           |

Data taken from [5, 6, 13, 16–18, 22]. *f*C: cardiac frequency; BP: blood pressure;  $S_{a,O_2}$ : arterial oxygen saturation;  $F_{1,O_2}$ : inspiratory oxygen fraction;  $P_{a,O_2}$ : arterial oxygen tension; PEEP: positive end-expiratory pressure; *f*R: respiratory frequency; MIP: maximal inspiratory pressure; *V*T: tidal volume; VC: vital capacity. 1 mmHg=0.133 kPa.

#### **ORIGINAL ARTICLE**

## Epidemiology of Weaning Outcome according to a New Definition The WIND Study

2017

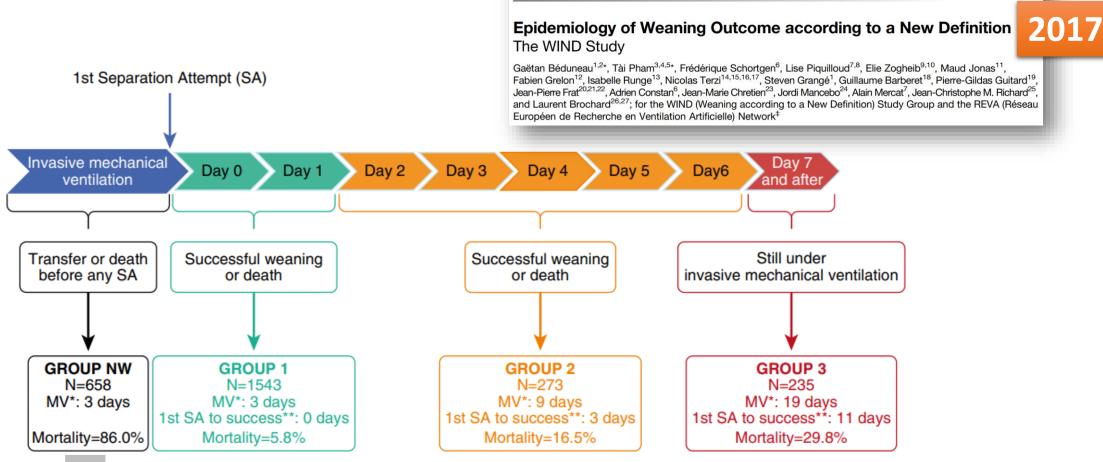
Gaëtan Béduneau<sup>1,2\*</sup>, Tài Pham<sup>3,4,5\*</sup>, Frédérique Schortgen<sup>6</sup>, Lise Piquilloud<sup>7,8</sup>, Elie Zogheib<sup>9,10</sup>, Maud Jonas<sup>11</sup>, Fabien Grelon<sup>12</sup>, Isabelle Runge<sup>13</sup>, Nicolas Terzi<sup>14,15,16,17</sup>, Steven Grangé<sup>1</sup>, Guillaume Barberet<sup>18</sup>, Pierre-Gildas Guitard<sup>19</sup>, Jean-Pierre Frat<sup>20,21,22</sup>, Adrien Constan<sup>6</sup>, Jean-Marie Chretien<sup>23</sup>, Jordi Mancebo<sup>24</sup>, Alain Mercat<sup>7</sup>, Jean-Christophe M. Richard<sup>25</sup>, and Laurent Brochard<sup>26,27</sup>; for the WIND (Weaning according to a New Definition) Study Group and the REVA (Réseau Européen de Recherche en Ventilation Artificielle) Network<sup>‡</sup>

# The First Separation

Attempt

#### What This Study Adds to the

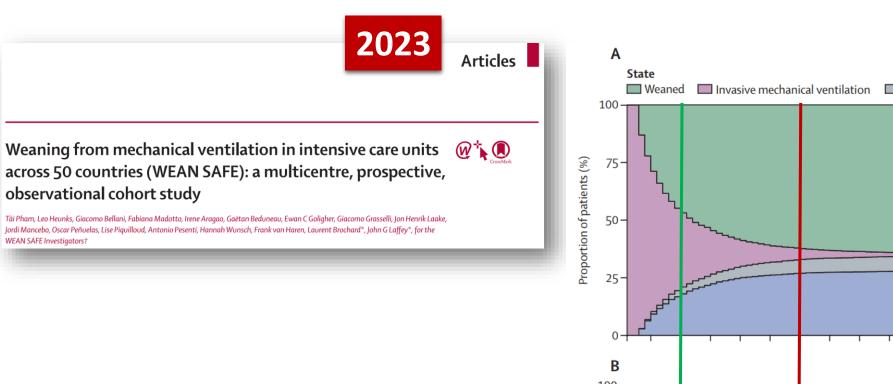
**Field:** The WIND (Weaning according to a New Definition) classification is based on the duration of ventilation after the first separation attempt. This classification shows that prolongation of weaning has a direct and immediate impact on morbidity and mortality, by contrast with previous reports using the International Consensus Conference classification. The first separation attempt is a major milestone, and each additional day without a weaning success after this first attempt is associated with an increased crude mortality.

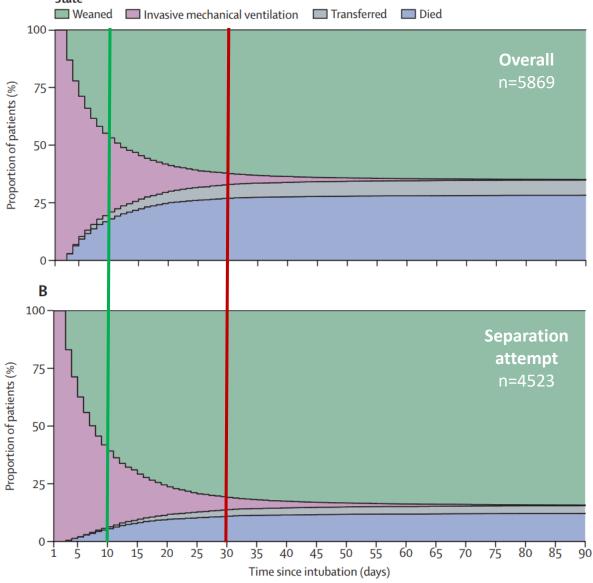

#### International Consensus Conference

- International Consensus Conference weaning groups:
  - Group 1 (simple weaning): successful extubation after the first spontaneous breathing trial (SBT).
  - Group 2 (difficult weaning): successful extubation after two to three SBTs and taking less than 7 days.
  - Group 3 (prolonged weaning): successful extubation after more than three SBTs or taking more than 7 days.
- International Consensus Conference weaning success and failure definitions:
  - Weaning success is defined as extubation not requiring reinstitution of ventilatory support in the 48 hours after extubation.
  - Weaning failure is defined as one of the following: (1) failed SBT; (2) reintubation and/or resumption of ventilator support in the 48 hours after extubation; or (3) death within 48 hours after extubation.

• WIND Groups

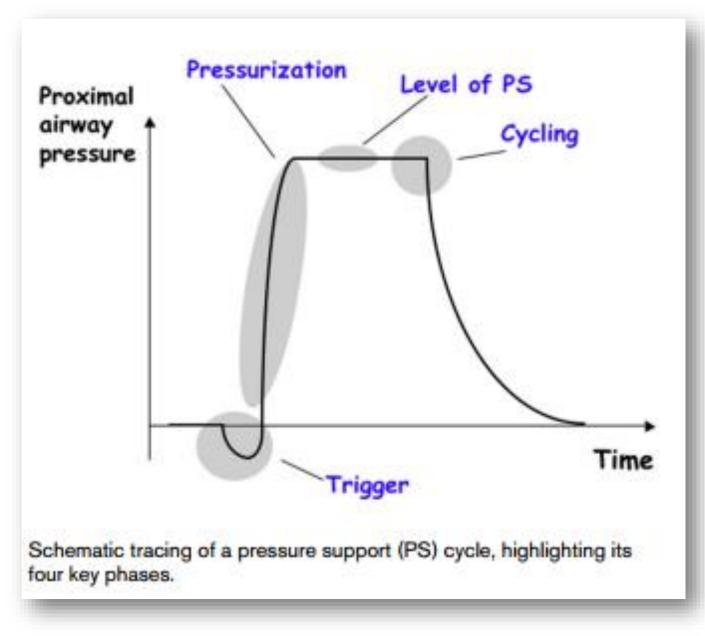
- Group no weaning: patients never experienced any separation attempt.
- Group 1 (short weaning): the first separation attempt resulted in a termination of the weaning process within 24 hours (succe separation or early death).
- Group 2 (difficult weaning): weaning was terminated after more than 1 day but in less than 1 week after the first separation attempt (successful separation or death).
- Group 3 (prolonged weaning): weaning was still not terminated 7 days after the first separation attempt (by success or death).

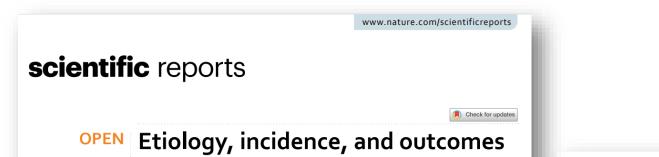

## 2007

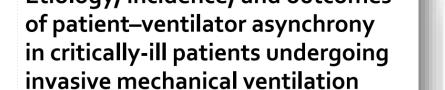



**ORIGINAL ARTICLE** 

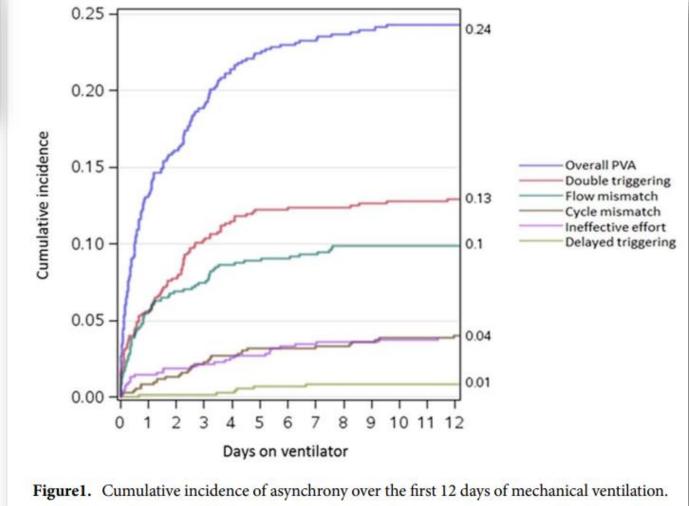
**Figure 2.** Group definitio and the weaning termina weaning success, and m attempt and the weaning weaning process; SA = s d mortality. This figure shows the group classification according to the number of days between the first separation attempt Group numbers, total duration of mechanical ventilation, number of days between the first separation attempt and the ty are displayed. \*Median duration of mechanical ventilation (d). \*\*Median number of days between the first separation cess (patients who never had a weaning success are excluded from this calculation). MV = mechanical ventilation; NW = no ation attempt.


Béduneau, Pham, Schortgen, et al.: Epidemiology of Weaning




## Interaction Patient-Ventilateur


Ptot = Etot.V + Rtot.V' + I.V''Ptot = Pmus + Pvm







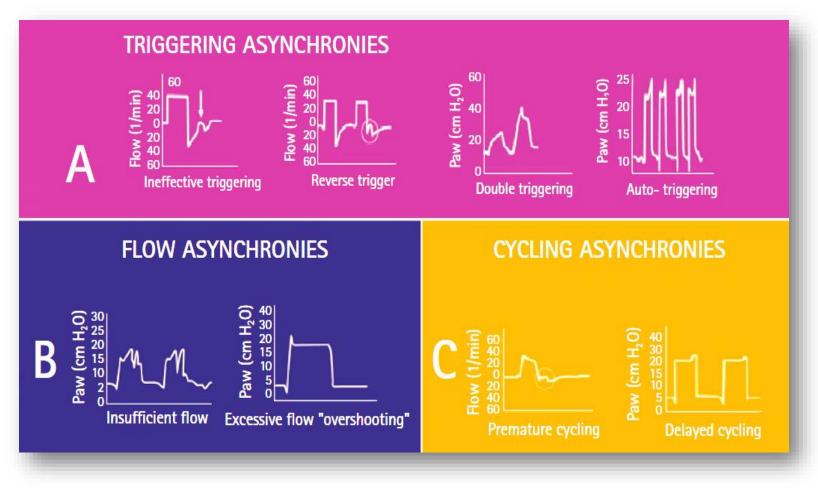
Yongfang Zhou<sup>2</sup>, Steven R. Holets<sup>3</sup>, Man Li<sup>4</sup>, Gustavo A. Cortes-Puentes<sup>1</sup>, Todd J. Meyer<sup>3</sup>, Andrew C. Hanson<sup>5</sup>, Phillip J. Schulte<sup>5</sup> & Richard A. Oeckler<sup>1</sup>



How to diagnose Patient-Ventilator Asynchrony? **The Eyeball Test** 

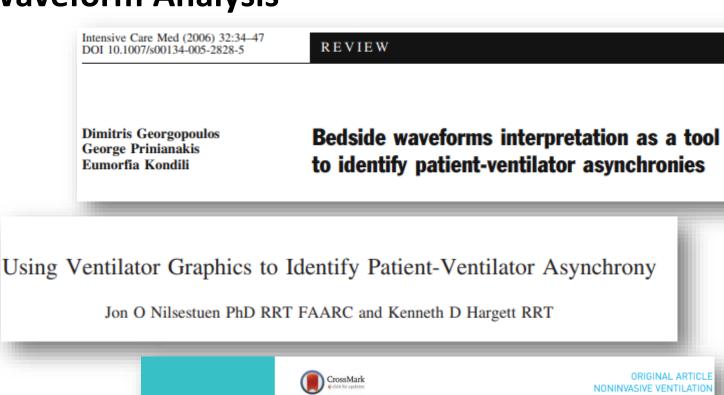
I teach the residents anyone who will listen to me—to

look at the patient,


listen to the ventilator,

look at the graphics,

then understand the physiology...


## **Standardized Ventilator Waveform Analysis**

- **1. Define the Mode**
- 2. Determine the Load
- 3. Diagnose the P-V Interaction
- 4. Intervention



## **Standardized Ventilator Waveform Analysis**

- **1. Define the Mode**
- 2. Determine the Load
- 3. Diagnose the P-V Interaction
- 4. Intervention



FR.

research

open



Federico Longhini <sup>1</sup>, Davide Colombo<sup>2</sup>, Lara Pisani<sup>3</sup>, Francesco Idone<sup>4</sup>, Pan Chun<sup>5</sup>, Jonne Doorduin<sup>6</sup>, Liu Ling<sup>5</sup>, Moreno Alemani<sup>7</sup>, Andrea Bruni<sup>8</sup>, Jin Zhaochen<sup>9</sup>, Yu Tao<sup>10</sup>, Weihua Lu<sup>10</sup>, Eugenio Garofalo<sup>8</sup>, Luca Carenzo<sup>2</sup>, Salvatore Maurizio Maggiore<sup>11</sup>, Haibo Qiu<sup>5</sup>, Leo Heunks<sup>12</sup>, Massimo Antonelli<sup>4</sup>, Stefano Nava<sup>3</sup> and Paolo Navalesi<sup>8</sup>

## **Poeso - Ventilator Waveform Analysis**

The number of asynchronous events detected by waveform analysis was demonstrated to be closely correlated with those detected through esophageal pressure measurement.

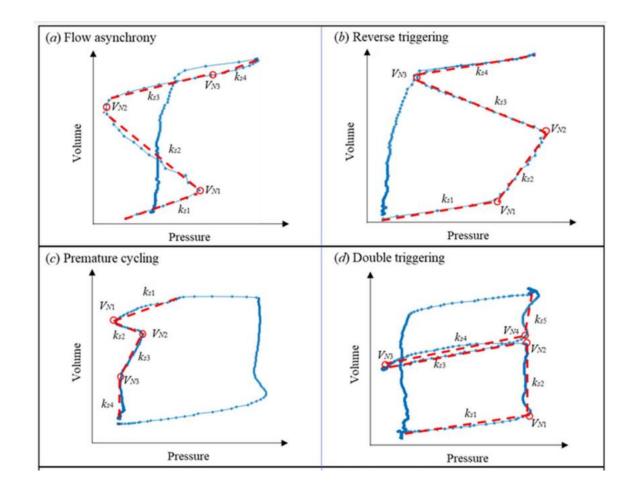
#### CONCISE CLINICAL REVIEW



#### The Application of Esophageal Pressure Measurement in Patients with Respiratory Failure

Evangelia Akoumianaki<sup>1</sup>, Salvatore M. Maggiore<sup>2</sup>, Franco Valenza<sup>3</sup>, Giacomo Bellani<sup>4</sup>, Amal Jubran<sup>5</sup>, Stephen H. Loring<sup>6</sup>, Paolo Pelosi<sup>7</sup>, Daniel Talmor<sup>6</sup>, Salvatore Grasso<sup>8</sup>, Davide Chiumello<sup>9</sup>, Claude Guérin<sup>10</sup>, Nicolo Patroniti<sup>4</sup>, V. Marco Ranieri<sup>11</sup>, Luciano Gattinoni<sup>12</sup>, Stefano Nava<sup>13</sup>, Pietro-Paolo Terragni<sup>11</sup>, Antonio Pesenti<sup>4</sup>, Martin Tobin<sup>5</sup>, Jordi Mancebo<sup>14</sup>, and Laurent Brochard<sup>15</sup>

## **Standardized Ventilator Waveform Analysis**


- **1. Define the Mode**
- 2. Determine the Load
- 3. Diagnose the P-V Interaction
- 4. Intervention

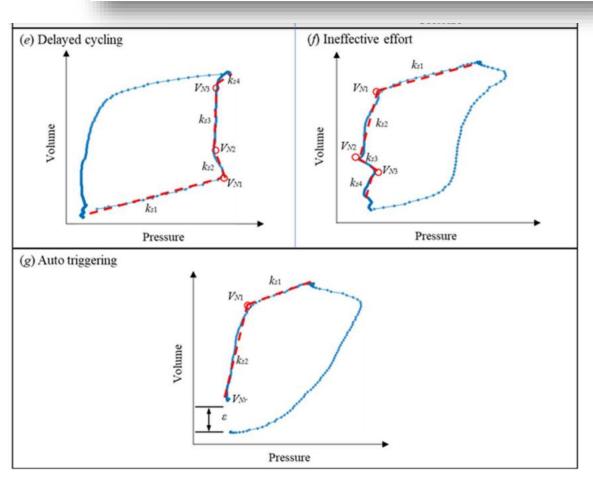
A Taxonomy for Patient-Ventilator Interactions and a Method to Read Ventilator Waveforms

Eduardo Mireles-Cabodevila, Matthew T Siuba, and Robert L Chatburn

| Standardized Ventilator Waveform Analysis       | 3                |
|-------------------------------------------------|------------------|
| 1. Define the TAG                               |                  |
| $\Box$ PC-CMVs                                  | □ PC-CSVa        |
| □ PC-CMVa                                       | □ PC-CSVr        |
| □ VC-CMVs                                       | □ VC-IMVs,s      |
| □ VC-CMVd                                       | □ VC-IMVd,d      |
| $\Box$ PC-CSVs                                  | □ PC-IMVs,s      |
| □ PC-IMVa,a                                     | □ Other          |
| 2. Define the load                              |                  |
| Inspiration                                     | Expiration       |
| □ Elastic load                                  | □ Elastic load   |
| □ Resistive load                                | □ Resistive load |
| $\Box$ P <sub>mus</sub>                         | $\Box P_{mus}$   |
| 3. Define Patient-Ventilator Interaction        |                  |
| Trigger                                         |                  |
| □ Normal                                        |                  |
| □ Early                                         |                  |
| □ Late                                          |                  |
| □ False                                         |                  |
| □ Failed                                        |                  |
| Inspiration                                     |                  |
| $\Box$ Normal                                   |                  |
| $\Box$ Work shifting                            |                  |
| $\Box$ Work shifting, severe                    |                  |
| Cycle                                           |                  |
| $\Box$ Normal                                   |                  |
| $\Box$ Early                                    |                  |
| □ Late                                          |                  |
| Expiration                                      |                  |
| $\Box$ Normal                                   |                  |
| □ Expiratory work                               |                  |
| 4. Interventions                                |                  |
| What is the main goal (choose one only)?        |                  |
| $\Box$ Safety $\Box$ Comfort $\Box$ Liberation. |                  |
| □ Adjusted Settings: which?                     |                  |
| □ Changed mode: To what?                        |                  |
| □ None                                          |                  |
| Other                                           |                  |

## **PV curves Analysis**




Chen et al. BioMedical Engineering OnLine (2023) 22:102 https://doi.org/10.1186/s12938-023-01165-0 BioMedical Engineering OnLine

#### RESEARCH



Automated evaluation of typical patient– ventilator asynchronies based on lung hysteretic responses

Yuhong Chen<sup>1</sup>, Kun Zhang<sup>1</sup>, Cong Zhou<sup>2,3\*</sup>, J. Geoffrey Chase<sup>2</sup> and Zhenjie Hu<sup>1</sup>



The Ability of Critical Care Physicians to Identify Patient-Ventilator Asynchrony Using Waveform Analysis: A National Survey

Rym Chelbi, Farah Thabet, Emna Ennouri, Khaoula Meddeb, Radhouane Toumi, Marwa Zghidi,



Imen Ben Saida, and Mohamed Boussarsar



search

# RESPIRATORY CARE

| Home | Content | Authors | Reviewers | CRCE | Open Forum | Podcast | Videos |
|------|---------|---------|-----------|------|------------|---------|--------|
|      |         |         |           |      |            |         |        |

Editorial Editorial

Closing the Gap in Patient-Ventilator Discordance Recognition

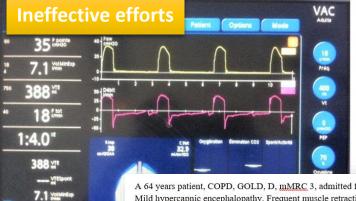
Alicia Liendo and Eduardo Mireles-Cabodevila Respiratory Care February 2024, 69 (2) 272-274; DOI: https://doi.org/10.4187/respcare.11825 136 CCPs
72 (52.9%) responded
59 (81.9%) residents
13 (18.1%) senior physicians

#### QUICK LOOK

#### Current knowledge

Waveform analysis is an established and reliable bedside method to assess patient-ventilator asynchrony (PVA). However, the proficiency of health care professionals in accurately identifying PVA varies widely between disciplines and years of experience.

#### What this paper contributes to our knowledge


This study highlights the limitations in correctly identifying PVAs among critical care physicians. Prior inconsistent training on ventilator graphics may have hindered the accurate identification of PVAs, indicating the need for more comprehensive and standardized training in this area and/or the implementation of ventilator built-in software to recognize and correct PVAs.

#### The Ability of Critical Care Physicians to Identify Patient-Ventilator Asynchrony Using Waveform Analysis: A National Survey

Rym Chelbi, Farah Thabet, Emna Ennouri, Khaoula Meddeb, Radhouane Toumi, Marwa Zghidi, Imen Ben Saida, and Mohamed Boussarsar

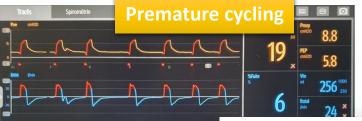
A 72 years patient, COPD, GOLD, D, <u>mMRC</u> 3, admitted for an acute exacerbation of COPD requiring invasive mechanical ventilation. A severe obstructive disorder highlighted by an auto-PEEP=12 cmH2O. Sedation, RASS, -1. Frequent muscle retraction.

VAC, Vt, 400 ml; RR, 18 c/min; Flow, 451/min; PEEP, 0 cmH2O; FiO2, 70%; I:E, 1:4.0.



0.00 Vitispont

31 years


A 64 years patient, COPD, GOLD, D, <u>mMRC</u> 3, admitted for an acute exacerbation of COPD. Mild <u>hypercapnic</u> encephalopathy. Frequent muscle retraction. ABGs, pH, 7.32, pCO2, 57mmHG, pO2, 61mmHg, Auto-PEEP=8 cmH2O.

PSV/PEEP: PS, 14 cmH2O; PEEP, 6 cmH2O; Trigger insp. 1.51/min, PS slope, 150 ms; Trigger exp. 50%; FiO2, 21%.

Courbes Double triggering but the set of the

A 19 years patient, admitted for a severe acute hypoxemic respiratory failure, associated to a community acquired pneumonia. After a short course of invasive mechanical ventilation, a trial of weaning on pressure support ventilation was attempted.

PSV/PEEP: PS, 12 cmH2O; PEEP, 6 cmH2O; Trigger insp. -1 cmH2O; PS slope, 150 ms; Trigger exp, 50%; FiO2, 30%.



PEP/AI

A. Ineffective efforts

- B. Flow asynchrony
- C. Auto-triggering
- D. Premature cycling
- E. Double triggering
- F. No asynchrony

A 42 years frailty woman admitted to the ICU for coma associated to <u>meningo</u>-encephalitis requiring invasive mechanical ventilation, without any pulmonary consolidation.

VAC, Vt, 500 ml; RR, 14 c/min; Flow, 50l/min; PEEP, 8 cmH2O; FiO2, 30%; I:E, 1:4.5.



#### PVAs 4 cases

# 29.2%

correctly identified PVAs

3

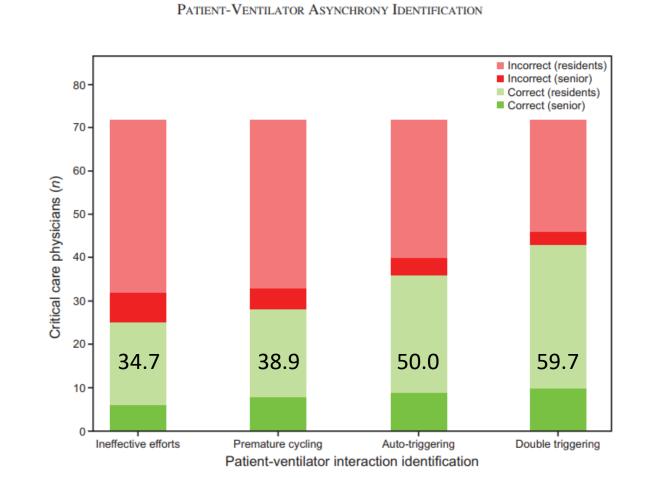



Fig. 1. Distribution of correct/incorrect identifications of patient-ventilator-asynchrony types among senior and residents critical care physicians. Double triggering was the most frequently identified patient-ventilator-asynchrony (PVA) type, followed by auto-triggering, premature cycling, and ineffective efforts. Seniors physicians demonstrated better identification skills among the respective PVA types.

#### Table 1. Factors That Affect Patient-Ventilator Synchrony

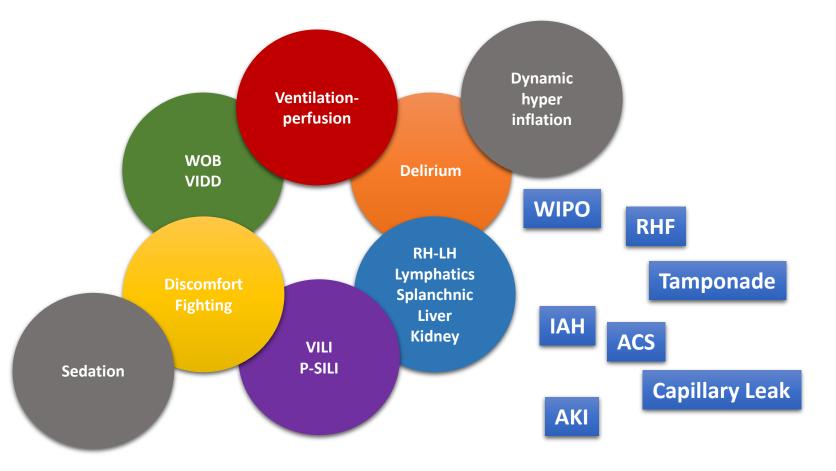
Ventilator Factors

Trigger variables: esophageal pressure, flow, or shape signal Sensitivity setting Rise-time capability Design, mode, and settings of the flow delivery system Flow pattern selected Design of the exhalation valve How positive end-expiratory pressure is generated by the software Extraneous flow (eg, from a nebulizer or added oxygen) Patient Factors Sedation level: pain, splinting Inspiratory effort/respiratory drive; neural timing Pathology of the respiratory system or abdomen; secretions Intrinsic positive end-expiratory pressure Size and type of airway Presence of leaks

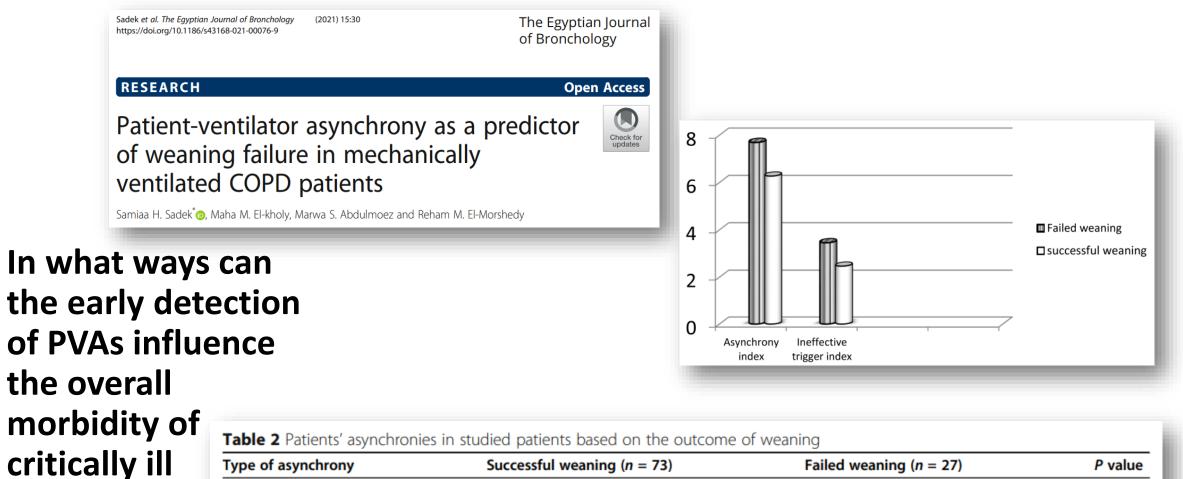


Acute and Critical Care 2022 Novemebr 37(4):491-501 https://doi.org/10.4266/acc.2022.01158

| pISSN 2586-6052 | eISSN 2586-6060


Asynchronies during invasive mechanical ventilation: narrative review and update

Santiago Nicolás Saavedra<sup>1</sup>, Patrick Valentino Sepúlveda Barisich<sup>2</sup>, José Benito Parra Maldonado<sup>3</sup>, Romina Belén Lumini<sup>4</sup>, Alberto Gómez–González<sup>3</sup>, Adrián Gallardo<sup>5</sup>


<sup>1</sup>Servicio de Medicina Fisica y Rehabilitación, Hospital Alemán, Buenos Aires, Argentino;<sup>2</sup>Servicio de Medicina Fisica y Rehabilitación, Hospital San Juan de Dios, La Serena, Chile;<sup>2</sup>Servicio de Rehabilitación en UCI, Hospital General de México Dr. Eduardo Liceaga, Ciudad de México, México; <sup>4</sup>Servicio de Kinesiología, Hospital El Carmen, Godoy Cruz, Mendoza;<sup>5</sup>Servicio de Kinesiología, Sanatorio Clínica Modelo de Morón, Buenos Aires, Argentina

How do different types of PVAs contribute to the challenges in weaning patients from MV?





What specific mechanisms lead to prolonged MV as a result of PVAs?



patients?

| Type of asynchrony  | Successful weaning $(n = 73)$ | Failed weaning $(n = 27)$ | P value  |
|---------------------|-------------------------------|---------------------------|----------|
| Ineffective trigger | 16.89 ± 10.60                 | 30.81 ± 23.18             | < 0.001* |
| Double trigger      | 4.76 ± 3.79                   | 6.25 ± 4.46               | 0.02*    |
| Auto trigger        | 1.71 ± 0.75                   | 2.34 ± 1.55               | 0.06     |
| Delayed cycle       | 11.79 ± 7.40                  | 15.48 ± 7.57              | 0.03*    |
| Early cycle         | 8.08 ± 7.47                   | 10.81 ± 8.97              | 0.07     |
| Flow asynchrony     | 2.72 ± 0.98                   | 3.60 ± 2.03               | 0.12     |
| Total asynchronies  | 43.27 ± 20.27                 | 70.11 ± 32.51             | < 0.001* |

## What are the implications of PVAs on the ICU LOS for patients undergoing MV?

Intensive Care Med (2017) 43:184–191 DOI 10.1007/s00134-016-4593-z

#### ORIGINAL

Clusters of ineffective efforts during mechanical ventilation: impact on outcome

Katerina Vaporidi<sup>1</sup>, Dimitris Babalis<sup>1</sup>, Achilleas Chytas<sup>2,3</sup>, Emmanuel Lilitsis<sup>1</sup>, Eumorfia Kondili<sup>1</sup>, Vasilis Amargianitakis<sup>1</sup>, Ioanna Chouvarda<sup>2,3</sup>, Nicos Maglaveras<sup>2,3</sup> and Dimitris Georgopoulos<sup>1</sup>

IE are associated with prolonged mechanical ventilation and increased mortality.

**ONLINE CLINICAL INVESTIGATIONS** 

#### The Effect of Clusters of Double Triggering and Ineffective Efforts in Critically Ill Patients

Magrans, Rudys PhD<sup>1</sup>; Ferreira, Francini MSc<sup>1</sup>; Sarlabous, Leonardo PhD<sup>2,3</sup>; López-Aguilar, Ji PhD<sup>2</sup>; Gomà, Gemma RN<sup>2</sup>; Fernandez-Gonzalo, Sol PhD<sup>2,4,5</sup>; Navarra-Ventura, Guillem MSc<sup>2</sup> Fernández, Rafael MD, PhD<sup>6</sup>; Montanyà, Jaume MSc<sup>1</sup>; Kacmarek, Robert PhD<sup>7,†</sup>; Rué, Montse PhD<sup>8,9</sup>; Forné, Carles PhD<sup>8,10</sup>; Blanch, Lluís MD, PhD<sup>2,3</sup>; de Haro, Candelaria MD, PhD<sup>2</sup>; Aquir Esperanza, José MD<sup>2,3,11</sup>; For the ASYNICU group

#### Collaborators 😔

Author Information⊗

Critical Care Medicine 50(7):p e619-e629, July 2022. | DOI: 10.1097/CCM.00000000005471

Although higher numbers of clusters might indicate better chances of survival, clusters with greater power and duration indicate a risk of worse clinical outcomes.

CrossMark

Journal of Intensive Care

RESEARCH

E

3.5.1 AI Thille 2006

Blanch 2015

Sousa 2020

Total events

3.5.2 ITI de Wit 2009

Hassan 2011

Total events

Subtotal (95% CI)

Subtotal (95% CI)

15.7%

14.9%

21.3%

9.8%

48.1%

77 38.3%

172 51.9%

#### Patient-ventilator asynchrony, impact on clinical outcomes and effectiveness of interventions: a systematic review and meta-analysis

Michihito Kyo<sup>1\*</sup><sup>(6)</sup>, Tatsutoshi Shimatani<sup>1</sup>, Koji Hosokawa<sup>2</sup>, Shunsuke Taito<sup>3,5</sup>, Yuki Kataoka<sup>4,5,6</sup>, Shinichiro Ohshimo<sup>1</sup> and Nobuaki Shime<sup>1</sup>

D

**High PVA** 

2 15

2 6

3 22

7

1 16

30

31

Test for overall effect: Z = 0.53 (P = 0.60)

Test for overall effect: Z = 1.42 (P = 0.16)

43

73

89

Heterogeneity: Tau<sup>2</sup> = 0.74; Chi<sup>2</sup> = 1.92, df = 1 (P = 0.17); I<sup>2</sup> = 48%

Heterogeneity:  $Tau^2 = 0.00$ ;  $Chi^2 = 0.06$ , df = 2 (P = 0.97);  $I^2 = 0\%$ 

3.4.1 AI Blanch 2015

Sousa 2020

Low PVA

5 47

14

8 81

27

3

9

12

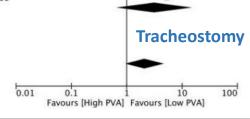
44

44

121

Study or Subgroup Events Total Events Total Weight M-H, Random, 95%

Subtotal (95% CI)


Study or Subgroup

|                                                                                                                                                                                                                                                                                                                                                                                             | A High PVA Low PVA                                                                                                                                                                                                                                                                                                      | Mean Difference M                                                                                        | Mean Difference                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------|
| Open Access                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                         |                                                                                                          | , Random, 95% Cl                  |
| ny, impact sectiveness                                                                                                                                                                                                                                                                                                                                                                      | Robinson 2013         11.7         15.7         9         8         8.6           Blanch 2015         15.2         9.8         6         8.7         7.7           Rolland-Debord 2017         13.7         9.8         86         10.7         6.5                                                                     | 26 5.0% 3.70 [-7.08, 14.48] 2013<br>44 7.4% 6.50 [-1.66, 14.66] 2015<br>17 14.9% 3.00 [-0.72, 6.72] 2017 |                                   |
| ic review                                                                                                                                                                                                                                                                                                                                                                                   | Sousa 2020 5.7 6.3 22 6.7 6                                                                                                                                                                                                                                                                                             | 81 16.6% -1.00 [-3.94, 1.94] 2020<br>215 47.4% -218 [-0.00 7.25]                                         | +                                 |
| suke Taito <sup>3.5</sup> , Yuki Kataoka <sup>4.5,6,7</sup> , Blanch 2015<br>Rolland-Debord 2017                                                                                                                                                                                                                                                                                            | Low PVA         Low PVA         Odds Ratio           ents         Total         Events         Total         Weight         M-H, Random, 95% CI           4         6         6         44         5.3%         12.67 [1.89, 84.97]           15         86         2         17         7.8%         1.58 [0.33, 7.67] | 2015                                                                                                     |                                   |
| Sousa 2020<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                             | 12         22         34         81         21.5%         1.66         [0.64, 4.28]           114         142         34.6%         2.64         [0.85, 8.16]                                                                                                                                                           | 2020                                                                                                     | +                                 |
| C<br>High PVA Low PVA<br>Study or Subgroup Events Total Events Total Weight M<br>3.3.1 Al                                                                                                                                                                                                                                                                                                   | Odds Ratio Odds Ra<br>I-H, Random, 95% Cl Year M-H, Random                                                                                                                                                                                                                                                              |                                                                                                          | ◆<br>MV duration                  |
| 3.3.1 Al           Thille 2006         7         15         15         47         20.1%           Robinson 2013         1         9         1         26         3.4%           Blanch 2015         4         6         10         44         8.4%                                                                                                                                          | 1.87 [0.57, 6.11]         2006           3.13 [0.17, 55.89]         2013           6.80 [1.08, 42.73]         2015                                                                                                                                                                                                      |                                                                                                          | 0 25 50<br>PVA] Favours [Low PVA] |
| Sousa 2020         13         22         43         81         31.0%           High PVA         Low PVA         Odds Ratio                                                                                                                                                                                                                                                                  | 1.28 [0.49. 3.32] 2020<br>Odds Ratio<br>M-H, Random, 95% Cl                                                                                                                                                                                                                                                             |                                                                                                          | _                                 |
| Events         Total         Events         Total         Weight         M-H, Random, 95% CI         Year           0         6         9         44         11.5%         0.29 [0.01, 5.57]         2015           5         22         3         81         27.7%         7.65 [1.67, 35.12]         2020           28         125         39.2%         1.87 [0.06, 53.74]         39.2% | M-H, Kandom, 95% Cl                                                                                                                                                                                                                                                                                                     | ICU mortality                                                                                            |                                   |
| Odds Ratio Odds Ratio<br>Sight M-H, Random, 95% Cl Year M-H, Random, 95% Cl                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                       | h PVA] Favours [Low PVA]                                                                                 |                                   |
| 5.7%       1.29 [0.22, 7.47] 2006         4.9%       1.07 [0.17, 6.56] 2015         1.3%       1.44 [0.35, 5.96] 2020         1.9%       1.29 [0.0 3 31]                                                                                                                                                                                                                                    | Hosp                                                                                                                                                                                                                                                                                                                    | ital mortality                                                                                           |                                   |
| 1.9% 1.29 [0.50, 3.31]<br>7); 1 <sup>2</sup> = 0%                                                                                                                                                                                                                                                                                                                                           | Reintubation Igh PVA] Fa                                                                                                                                                                                                                                                                                                | 10 100<br>avours [Low PVA]                                                                               |                                   |
| 9.8% 0.91 [0.09, 9.45] 2009<br>8.3% 5.27 [2.28, 12.17] 2011                                                                                                                                                                                                                                                                                                                                 | 1 10 100                                                                                                                                                                                                                                                                                                                | nclusions                                                                                                |                                   |
| 8.1% 3.12 [0.65, 15.07]<br>7); I <sup>2</sup> = 48% Tracheost                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                         | A may be associated with clinicate care physicians may need to pay                                       |                                   |
| 0.0% 2.13 [0.96, 4.71]                                                                                                                                                                                                                                                                                                                                                                      | PV                                                                                                                                                                                                                                                                                                                      | A during the management of pati                                                                          | ients receiving inva-             |

sive mechanical ventilation, and the potential of adjust-

ments to ventilator settings and sedatives to reduce PVA.

Total (95% CI) 132 293 100.0% 2.13 [0.96, 4.71] 38 39 Total events Heterogeneity: Tau<sup>2</sup> = 0.25; Chi<sup>2</sup> = 5.72, df = 4 (P = 0.22); I<sup>2</sup> = 30% Test for overall effect: Z = 1.87 (P = 0.06)Test for subgroup differences:  $Chi^2 = 0.89$ , df = 1 (P = 0.34),  $l^2 = 0\%$ 

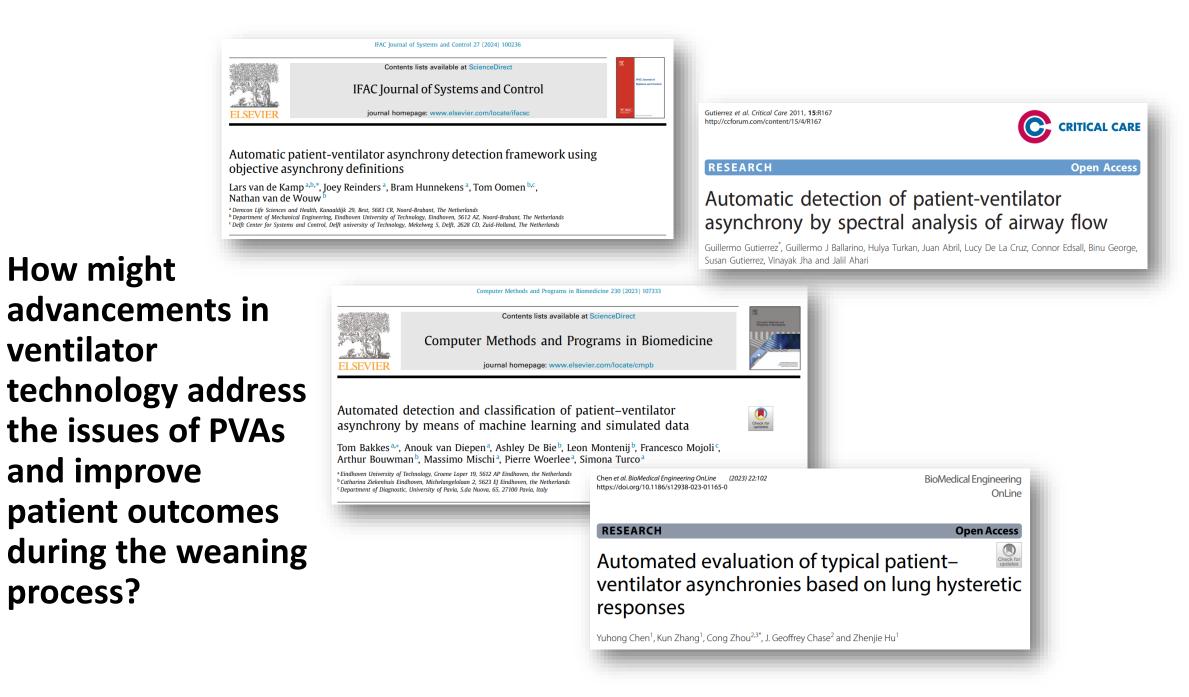


REVIEW

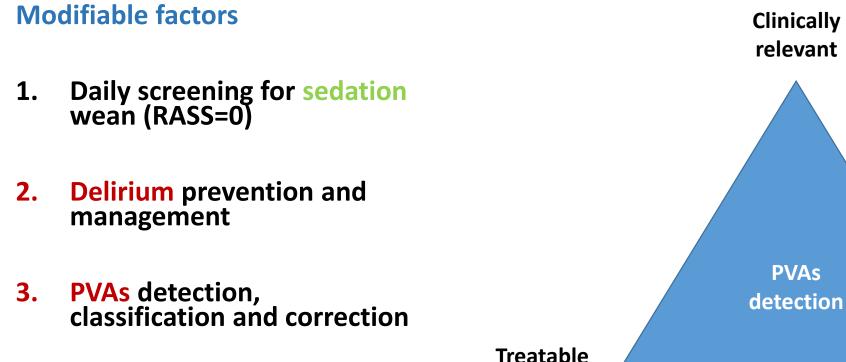
# Does patient-ventilator asynchrony really matter?

Docci, Mattia<sup>a,b,c</sup>; Rodrigues, Antenor<sup>a,b</sup>; Dubo, Sebastian<sup>d</sup>; Ko, Matthew<sup>a,b</sup>; Brochard, Laurent<sup>a,b</sup>

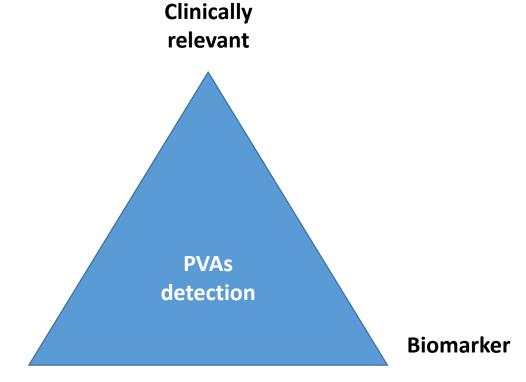
#### Author Information $\otimes$


*Current Opinion in Critical Care* ():10.1097/MCC.00000000001225, October 24, 2024. | *DOI:* 10.1097/MCC.00000000001225

Clinicians' ability to **recognize** asynchronies is typically low.


There is growing evidence that in susceptible patients, dyssynchrony may lead to **VILI (or P-SILI)** and that clusters of such dyssynchronous events have the highest association with **poor outcomes.** 

Dyssynchrony may also be associated with harm indirectly when it reflects **over-assistance** or **over-sedation**.


Automatized softwares based on artificial intelligence have been trained to largely outperform human eyesight and are close to be implemented at the bedside.



## **Conclusion: A bundle for weaning success**



4. Daily screening for Early SBT

