Flash info

☐ Epuration Extra Rénale en Réanimation
Dr <u>Ben Romdhane Kaïs</u>
☐ Hémodynamique
Dr <u>samia Ayad</u>
☐ Transfusion en réanimation
Dr <u>Hatem el Ghord</u>
☐ Pneumopathie acquise sous ventilation mécanique
Dr <u>Youssef Blel</u>

RESEARCH Open Access

Impact of timing of renal replacement therapy initiation on outcome of septic acute kidney injury

Yu-Hsiang Chou^{1†}, Tao-Min Huang^{2†}, Vin-Cent Wu¹, Cheng-Yi Wang³, Chih-Chung Shiao⁴, Chun-Fu Lai¹, Hung-Bin Tsai⁵, Chia-Ter Chao¹, Guang-Huar Young⁶, Wei-Jei Wang⁷, Tze-Wah Kao¹, Shuei-Liong Lin¹, Yin-Yi Han⁵, Anne Chou⁵, Tzu-Hsin Lin⁶, Ya-Wen Yang⁸, Yung-Ming Chen¹, Pi-Ru Tsai⁴, Yu-Feng Lin⁸, Jenq-Wen Huang¹, Wen-Chih Chiang¹, Nai-Kuan Chou⁶, Wen-Je Ko^{6*}, Kwan-Dun Wu¹, Tun-Jun Tsai¹ and for the NSARF Study Group⁹

Chou et al. Critical Care 2011, **15**:R134 http://ccforum.com/content/15/3/R134

Introduction

- Pas d'arguments consensuels concernant les délais d'instauration de l'EER en cas d'IRA en réanimation
- Hypothèse de travail :
 - comme les cytokines de l'inflammation jouent un rôle primordial dans l'IRA d'origine septique comparé aux autres étiologies
 - Le délai de l'initiation de l'EER chez ces malades serait plus important que les autres étiologies d'IRA.

• But : Tester l'hypothèse que le délai d'instauration de l'EER défini par les critères "RIFLE" est associé avec la mortalité

Méthodologie

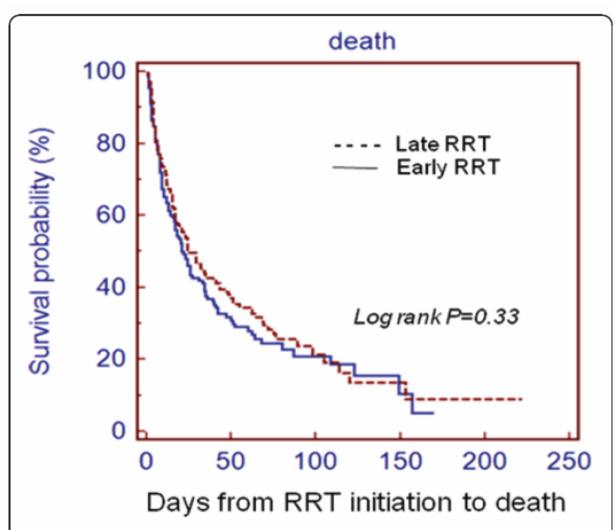

- Inclusion : patients présentant une IRA septique nécéssitant EER entre juillet
 2002 et octobre 2009
- Deux groupes d'étude : dialyse précoce vs dialyse tardive
- Critères du délais : classification « RIFLE »
 - Dialyse précoce : classe R « risk »
 - Dialyse tardive : classe I « injury »; F « failure »

Table 1 Comparisons of demographic data and clinical parameters among the whole cohort as well as early, and late RRT groups (n = 370)

	Enrolled patients (n = 370)	Early RRT (<i>n</i> = 192)	Late RRT (<i>n</i> = 178)	<i>P</i> -value
Pre-RRT data				
Hematocrit (%)	30.0 ± 5.8	30.1 ± 6.3	29.8 ± 0.6	0.62
BUN (mg/dL)	81 ± 40.6	78.2 ± 41.2	84.0 ± 39.8	0.19
(mmol/L)	28.9 ± 14.5	27.9 ± 14.7	30.0 ± 14.2	
Creatinine (mg/dL)	3.4 ± 0.4	3.4 ± 0.3	3.4 ± 0.8	0.17
(µmol/L)	298.8 ± 35.4	297.9 ± 23.9	299.7 ± 70.7	
Albumin (g/dL)	3.0 ± 1.2	3.1 ± 1.5	2.9 ± 0.6	0.09
(g/L)	30 ± 12	31 ± 15	29 ± 6	
Potassium (mEq/L)	4.8 ± 12.1	5.0 ± 1.0	4.3 ± 0.9	0.32
Lactate (mg/dL)	3.4 ± 3.6	3.5 ± 3.9	3.1 ± 3.5	0.10
(mmol/L)	0.4 ± 0.4	0.4 ± 0.4	0.3 ± 0.4	
GCS scores	11.8 ± 3.7	11.5 ± 4.3	11.0 ± 4.5	0.72
Systolic blood pressure	122.7 ± 25.7	122.8 ± 26.5	123.7 ± 25.7	0.84
Diastolic blood pressure	61.2 ± 39.0	61.5 ± 14.1	60.1 ± 14.0	0.36
Central venous pressure	13.8 ± 5.5	14.16 ± 5.9	13.4 ± 5.2	0.22
APACHE II scores	13.1 ± 6.4	12.3 ± 7.0	14.0 ± 5.5	0.52
SOFA scores	11.2 ± 3.9	10.8 ± 4.0	11.6 ± 3.7	0.80
SAPS III score	67.3 ± 6.8	66.2 ± 6.7	68.6 ± 6.7	0.61
Indications for dialysis				
Azotemia with uremic symptoms	265 (71.6)	119 (62.0)	146 (82.0)	< 0.01
Oligouria or anuria	241 (65.1)	113 (58.9)	128 (63.0)	0.01
Fluid overload	81 (21.9)	41 (21.4)	40 (22.5)	0.29
Electrolyte imbalance	23 (6.2)	8 (4.2)	15 (8.4)	0.14
Acid base imbalance	25 (6.8)	12 (6.4)	13 (7.3)	0.84
Rhabdomyolysis	7 (1.9)	5 (2.7)	2 (1.1)	0.51
Hospital mortality	259 (70.0)	135 (70.8)	124 (69.7)	0.98

Table 2 Independent predictors of in-hospital mortality obtained using the Cox proportional hazards model

Variables		Unadjusted (model	1)	Propensity score adjusted (model 2)				
	HR	95% CI	P-value	HR	95% CI	P-value		
Post-operative, yes	0.631	0.478 - 0.832	0.0011					
Pre-RRT CVP (mmHg)	1.030	1.006 - 1.055	0.0140					
Pre-RRT DBP (mmHg)	0.987	0.977 - 0.997	0.0089	0.987	0.977 - 0.997	0.013		
Pre-RRT GCS scores	0.929	0.898 - 0.962	< 0.001	0.923	0.890 - 0.958	< 0.001		
Pre-RRT lactate (mM)	1.086	1.048 - 1.124	< 0.001	1.073	1.034 - 1.113	< 0.001		
SOFA score on ICU admission	0.941	0.907 - 0.977	0.0015	0.934	0.900 - 0.970	< 0.001		
SOFA score pre-RRT	1.068	1.019 - 1.120	0.0058	1.104	1.051 - 1.160	< 0.001		
Propensity scores	-	-	-	0.085	0.027 - 0.268	0.085		

Figure 1 Comparison of cumulative patient survival between early and late dialysis groups, as defined by the sRIFLE classification. By Kaplan-Meier method. Dashed line, late dialysis group (sRIFLE-I and sRIFLE-F). Solid line, early dialysis group (sRIFLE-0 and sRIFLE-R). RRT: renal replacement therapy.

Messages à retenir

- L'initiation de l'EER en cas d'IRA septique est un moment crucial; différentes études n'ont pas démontré avec grande évidence ou une définition claire la précocité de l'EER
- Les paramètres Pré-EER : PAD; CGS; lactate; sofa score sont des facteurs associés à un mauvais pronostique.
- EER précoce ou tardive définie selon les critères simplifiés de RIFLE n'est pas associée avec la mortalité
- D'autres marqueurs physiologiques devraient etre identifiés pour déterminer le moment optimal de démarrer une EER.

Intensity of Continuous Renal Replacement Therapy in Acute Kidney Injury in the Intensive Care Unit: A Systematic Review and Meta-Analysis

Daniel T. Negash, MD¹, Vinay K. Dhingra, MD², Michael Copland, MD³, Donald Griesdale, MD² and William Henderson, MD²

Vascular and Endovascular Surgery 45(6) 504-510 © The Author(s) 2011 Reprints and permission: sagepub.com/journalsPermissions.nav DOI: 10.1177/1538574411407935 http://ves.sagepub.com

Problématique

- L'approche optimale de l'EER en milieu de réanimation aussi bien en matière de dose ou de délai reste trés controversée :
 - Une étude monocentrique contrôlée randomisée a démontré une amélioration du pronostique en augmentant les doses de dialyse de 20 à 35 – 45 ml/kg/h.
 - Une étude multicentrique contrôlée randomisée n'a pas montré une association avec le pronostique en augmentant les doses de dialyse "RENAL study"
 - Le but de cette méta analyse :
 - conduire une revue systématique de la littérature de toutes les études contrôlées randomisées pour examiner l'effet de l'intensité de l'EERC sur la survie des patients en IRA en réanimation.

Méthodologie

• Critères d'inclusion :

- Étude prospective contrôlées comparant EER à doses élevées vs doses faibles
- Patients adultes en IRA en réanimation
- EERC
- Études avec des données précises sur l'évolution et la mortalité
- Études en anglais

• Exclusion:

- Études avec dialyse péritonéale
- Études avec groupes de contrôles historiques
- Études incorporant des données HDI
- Études incluant des enfants

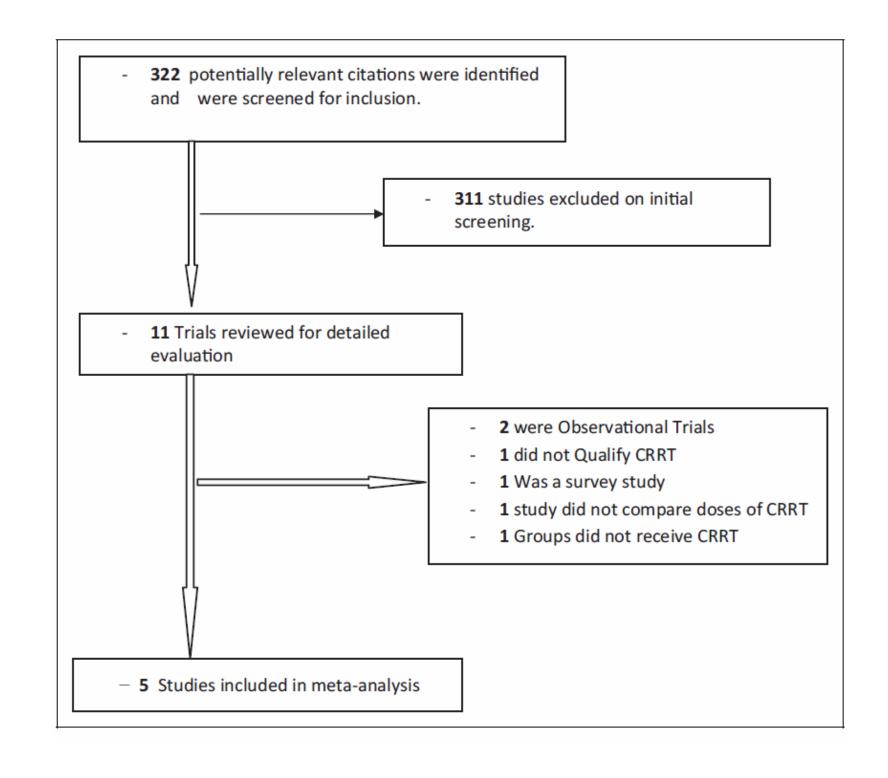


Table 3. Characteristics and Outcome of Individual Trials by Treatment Group

	Year of		No. of		Intention-to-Treat		o. of ents		Day vival
Trials	Publication	Country	Centers	Concealment	Analysis	HD	LD	HD	LD
Ronco et al ¹⁰	2000	Italy	1	Yes (central randomization)	Yes	279	146	58 ^a	41ª
Bouman et al ¹²	2002	The Netherlands	2	?	Yes	35	71	74.3	71
Saudan et al ¹¹	2006	Switzerland	I	Yes (Seq. No. opaque envelope)	Yes	104	102	59	39
Tolwani et al ¹³	2008	USA	1	Yes (sealed numbered envelop)	Yes	100	100	49 ^b	56 ^b
Bellomo et al ¹⁵	2009	Australia and New Zealand	35	Yes (central randomization)	Yes	722	743	61.5	63.I

Abbreviations: CRRT, continuous renal replacement therapy; HD, high dose; LD, low dose; ICU, intensive care unit.
^a Mortality at I5 days after the end of CRRT.
^b Mortality at ICU discharge or 30 days postrandomization, whichever comes first.

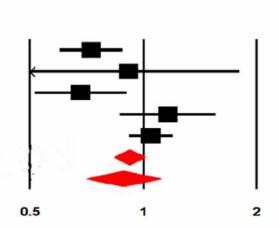
Table 1. Patient Characteristics of Individual Trials by Treatment Group

Trials	CRRT Dose	No. of Pts	Mean Age (years)	Male (%)	Mean Wt. (kg)	Sepsis (n, %)	Major cause of AKI	Creatinine	BUN	Oliguria (%)	APATCHE II
Ronco et al ¹⁰	HD	279	61	56.2	68	32 (11.5)	Surgical	322	18.6	100	23
	LD	146	61	55.5	68	20 (14)		309	18.2	100	22
Bouman et al ¹²	HD	35	68	60	-	-	Cardiosurgery	-	16.3	100	23.5
	LD	71	68	59	-	-	,	-	27	100	22.5
Saudan et al ¹¹	HD	104	62	57	73	37 (64)	Sepsis	468	30	41	24
	LD	102	65	65	73	34 (56)	•	388	29	33	26
Tolwani et al ¹³	HD	100	58	59	93	54 (54)	Sepsis	369.6	75	64	26
	LD	100	62	57	90	54 (54)	•	378.4	76	63	26
Bellomo et al ¹⁵	HD	722	64.7	65.7	80.8	360 (49.9)	Sepsis	338	24.2	59.8	-
	LD	743	64.4	63.5	80.3	363 (48.9)	•	330	22.8	59.8	-

2402

Taux mortalité global : 986 (41%)

Table 2. Prescribed and Delivered Dose of CRRT in Individual Trials by Treatment Group


	ı	High-Dose CRRT		l	Low-Dose CRRT				
Trials	Prescribed Dose (mL/kg per h)	Delivered Dose (mL/kg pe h)	Duration (Days)	Prescribed Dose (mL/kg per h)	Delivered Dose (mL/kg per h)	Duration (Days)			
Ronco et al ¹⁰	35 and 45	33.6 and 42.4	12	20	18.9	11			
Bouman et al ¹²	≥72 L/d ^a	48.2	2.9	24-34 L/d ^a	20	3.4			
Saudan et al ¹¹	42	35	-	25	22	-			
Tolwani et al ¹³	35	29	10	20	17	9.7			
Bellomo et al ¹⁵	40	33.4	6.3	25	22	5.9			

Abbreviation: CRRT, continuous renal replacement therapy.

^a Dose prescribed per unit time.

Meta analysis

Model	Study name		Statist	ics for e	ach study	L		
		Risk ratio	Lower limit	Upper limit	Z-Value	p-Value	Relative weight	Relative weight
	Ronco et al	0.724	0.598	0.877	-3.295	0.001	24.29	24.47
	Bouman et al	0.913	0.465	1.792	-0.265	0.791	1.97	8.15
	Saudan et al	0.680	0.516	0.897	-2.727	0.006	11.68	20.55
	Tolwani et al	1.159	0.865	1.554	0.988	0.323	10.44	19.83
	Bellomo et al	1.044	0.915	1.191	0.642	0.521	51.63	27.00
Fixed		0.916	0.833	1.007	-1.812	0.070		
Random		0.883	0.704	1.107	-1.081	0.280		

Favours HD

Favours HD

Risk ratio and 95% Cl

Conclusion

 En milieu de réanimation avec IRA les doses élevées de dialyse en EERC n'est pas associée à une faible mortalité comparés aux doses standards

RESEARCH Open Access

Cost of acute renal replacement therapy in the intensive care unit: results from The Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Study

Nattachai Srisawat¹, Loredo Lawsin^{1,2}, Shigehiko Uchino³, Rinaldo Bellomo⁴, John A Kellum^{1*}, the BEST Kidney Investigators

Srisawat et al. Critical Care 2010, **14**:R46 http://ccforum.com/content/14/2/R46

Introduction

- La majorité des études contrôlées randomisées comparant HDI/CRRT n'ont pas montré de différence significative en terme de mortalité
- Les auteurs dans la majorité des cas n'ont pas inclus les différences de coût entre les techniques et aucune étude multicentrique n'a été conduite pour examiner le coût.
- Les données qui existent montrent une évidence limitée et faiblement généralisable
 - Le but de l'étude :
 - Determiner l'intervalle et les variations du coût de dialyse (EERC/HDI) entre les différents centres et pays.

Méthodologie

- Données recueillis et analysées du « B.E.S.T Kidney study (Beginning and Ending Supportive Therapy for the Kidney)" qui est une étude épidémiologique prospective multicentrique multinationale, qui permet d'analyser les différents aspects de l'EER a un niveau international.
- 53 centres dans 23 pays

Analyse du coût

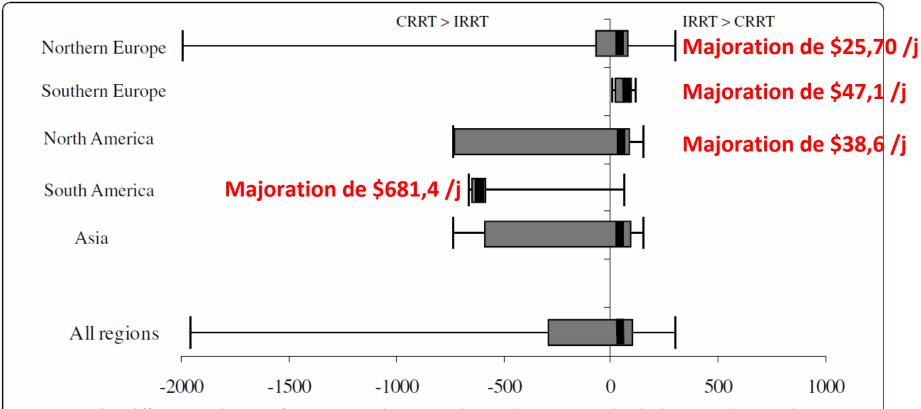
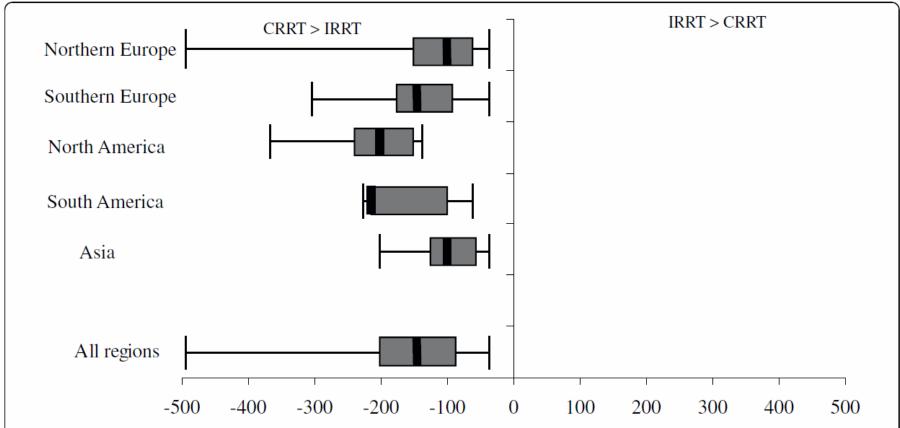
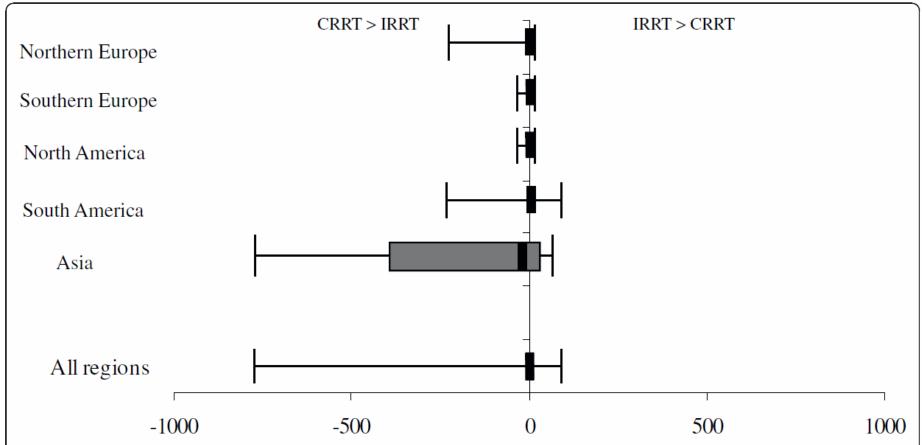

- Coût infirmier/24h
- Coût du liquide de dialysat (HDI) et liquide de réinjection en (EERC)/24h
- Cout de l'anticoagulation/24h
- Circuit extra corporel (HDI/EERC)

Table 2 Treatment features of RRT by regions

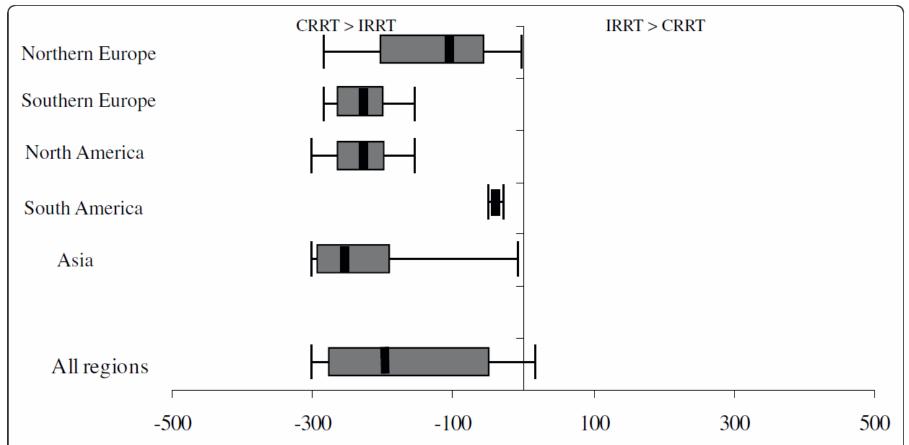
	Northern Europe	Southern Europe	North America	South America	Asia	Australia
. Who prescribes IRRT?						
Nephrologist (%)	3 (23.5)	3 (33.3)	7 (87.5)	5 (100)	2 (22.2)	3 (60)
Intensivist (%)	5 (38.5)	1 (11.1)	1 (12.5)	0	4 (44.4)	2 (40)
Both (%)	5 (38.5)	5 (55.6)	0	0	3 (33.3)	0
2. Who prescribes CRRT?						
Nephrologist (%)	1 (7.7)	1 (8.3)	5 (62.5)	4 (80)	0	0
Intensivist (%)	11 (84.6)	5 (41.7)	2 (25)	1 (20)	8 (88.9)	6 (100)
Both (%)	1 (7.7)	6 (50)	1 (12.5)	0	1 (11.1)	0
. Who directs IRRT administration?						
Physician (%)	0	0	0	0	1 (11.1)	0
Dialysis nurse (%)	10 (76.9)	6 (75)	7 (87.5)	4 (80)	3 (33.3)	4 (80)
ICU nurse (%)	1 (7.7)	2 (25)	1 (12.5)	0	3 (33.3)	1 (20)
Technician (%)	1 (7.7)	0	0	0	2 (22.2)	0
Physician and nurse	1 (7.7)	0	0	1 (20)	0	0
. Who directs CRRT administration						
Physician (%)	1 (7.7)	1 (9.1)	0	3 (60)	3 (33.3)	0
Dialysis nurse (%)	2 (15.4)	2 (18.2)	4 (50)	1 (20)	0	0
ICU nurse (%)	8 (61.5)	8 (72.7)	4 (50)	0	5 (55.6)	6 (100)
Technician (%)	0	0	0	0	1 (11.1)	0
Physician and nurse	2 (15.4)	0	0	1 (20)	0	0
Nurse-to-patient ratio for IRRT	1.3	1.1	1.5	1.1	1.3	1
. Nurse-to-patient ratio for CRRT	1.2	1.7	1.4	1.2	1.4	0.8


RRT, renal replacement therapy; IRRT, intermittent renal replacement therapy; CRRT, continuous renal replacement therapy; ICU, intensive care unit.

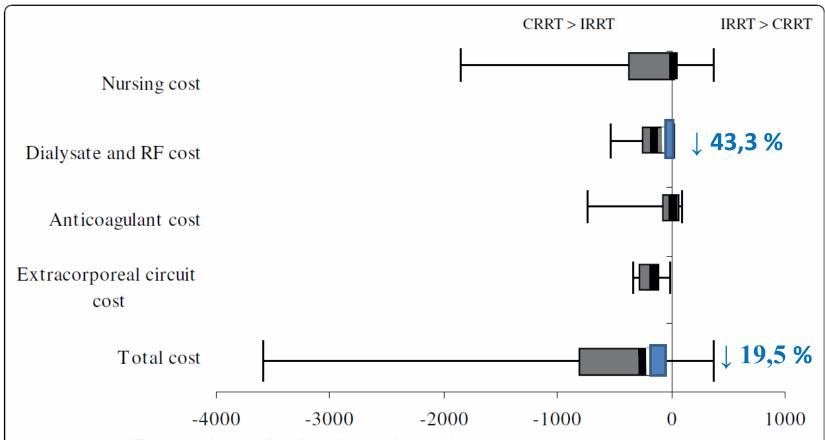
Le coût infirmier


Figure 1 Median difference and range of nursing costs by region. The error bars represent the absolute range between the maximum nursing cost of CRRT and the minimum nursing cost of IRRT on the right, and between the maximum nursing cost of IRRT and minimum nursing cost of CRRT on the left. The box represents the 1st and 3rd quartiles of the nursing-cost range. The thick solid line represents the median difference in nursing costs for CRRT and IRRT across all centers in each region in which data were available.

Liquide de dialysae (dialysat/poches de réinjection)


Figure 2 Median difference and range of dialysate and replacement-fluid costs by region. The error bars represent the absolute range between the maximum fluid cost of CRRT and the minimum fluid cost of IRRT, and between the maximum fluid cost of IRRT and minimum fluid cost of CRRT. The box represents the 1st and 3rd quartiles of the fluid-cost range. The thick solid line represents the median difference in fluid costs for CRRT and IRRT across all centers in each region in which data were available.

L'anticoagulation


Figure 3 Median difference and range of anticoagulant costs by region. The error bars represent the absolute range between the maximum anticoagulant cost of CRRT and the minimum anticoagulant cost of IRRT, and between the maximum anticoagulant cost of IRRT and minimum anticoagulant cost of CRRT. The box represents the 1st and 3rd quartiles of the anticoagulant-cost range. The thick solid line represents the median difference in anticoagulant costs for CRRT and IRRT across all centers in each region in which data were available.

Le circuit extracorporel

Figure 4 Median difference and range of extracorporeal circuit costs by region. The error bars represent the absolute range between the maximum extracorporeal circuit cost of CRRT and the minimum extracorporeal circuit cost of IRRT, and between the maximum extracorporeal circuit cost of IRRT and minimum extracorporeal circuit cost of CRRT. The box represents the 1st and 3rd quartiles of the extracorporeal circuit-cost range. The thick solid line represents the median difference in extracorporeal circuit costs for CRRT and IRRT across all centers in each region in which data were available.

Le coût Total

Figure 5 Median difference and range of total cost by cost domain. The error bars represent the range between the maximum cost of each domain for CRRT and the minimum cost for IRRT and the maximum cost of each domain for IRRT and minimum cost for CRRT. The box represents the 1st and 3rd quartiles of the total cost range. The thick solid line represents the range difference between the median cost differences for CRRT and IRRT. The thick white line represents the median difference of fluid costs when we limit replacement-fluid rate to 25 ml/min.

 La médiane de différence de coût entre EERC/HDI englobant tous les centres = \$289,60/j en plus pour EERC

 La diminution de la dose de dialyse < 25 ml/mn entraine un gain de \$67,20/j (23%)

Key messages

- Il existe un surcoût global de EERC/HDI
- Le circuit extracorporel et les poches de réinjection sont les principaux déterminants de surcoût de EERC
- Le coût infirmier est le principal surcoût de HDI
- La diminution de la dose de dialyse à 25 ml/mn permet de diminuer considérablement le surcoût de EERC