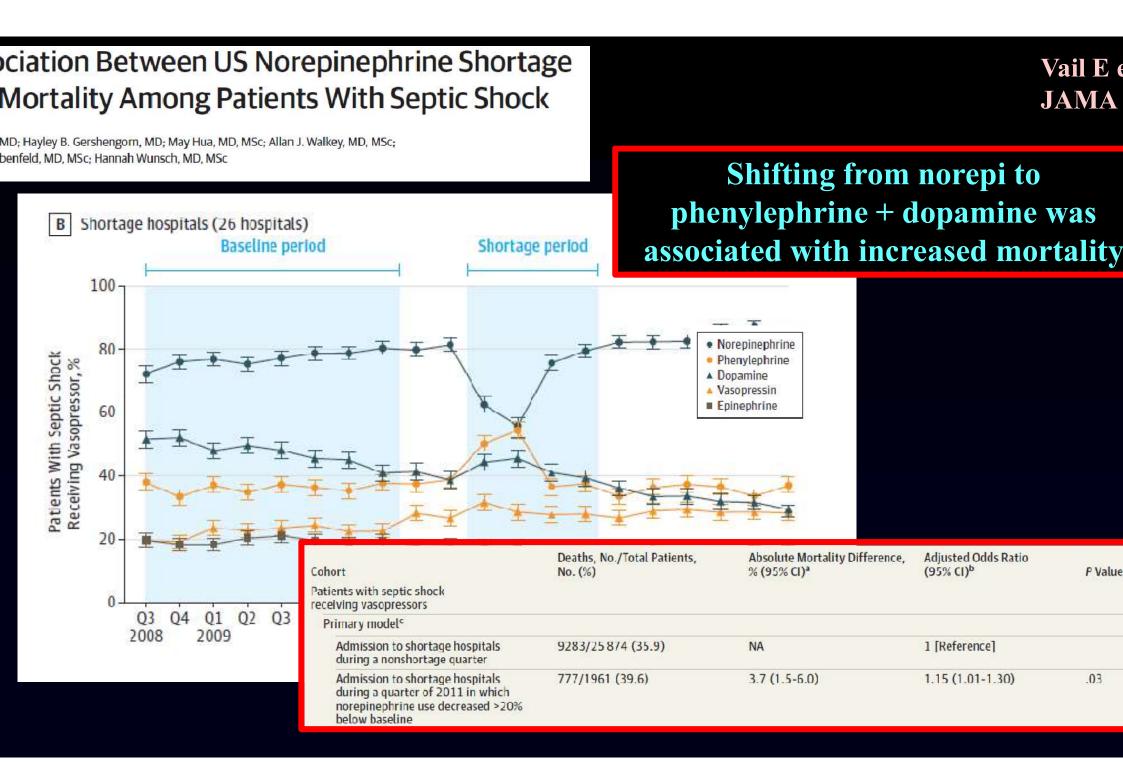

Place de la vasopressine

Daniel De Backer

Head Intensive Care, CHIREC hospitals, Belgium Professor of Intensive Care, Université Libre de Bruxelle Past- President European Society of Intensive Care Medic

Sorepinephrine vs Dopamine in shock (SOAP investigators)

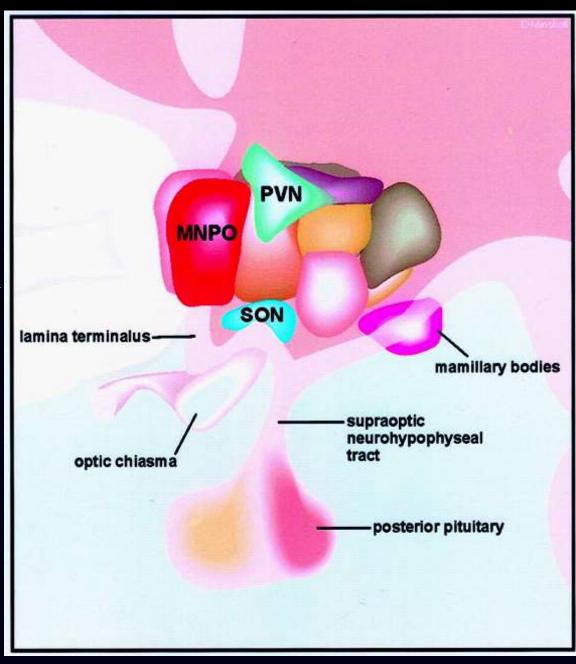


De Backer et a NEJM 362: 779

Dopamine vs norepinephrine in septic shock A meta-analysis

De Backer e CCM 40:725

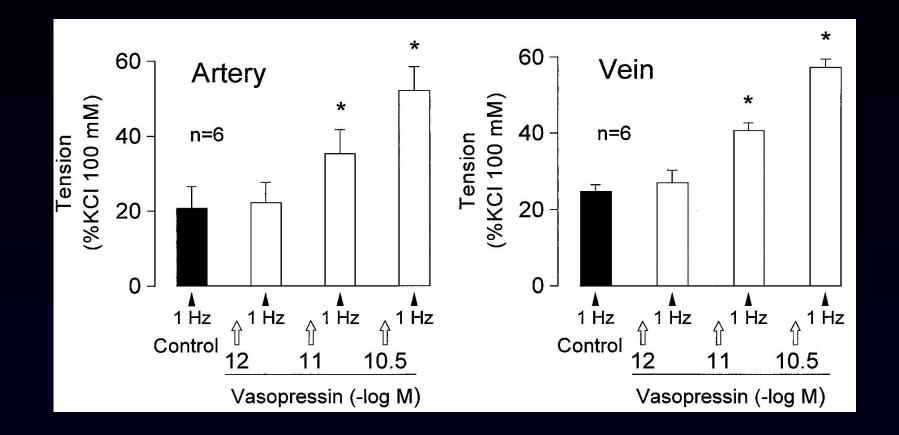
Study	Norepine	ephrine	Dopa	mine		RR Dopa/norepi	
	E∨ent	Total	E∨ent	Total	RR [95%CI]		Norepi better
Martin et al.	7	16	10	16	1.43 [0.73-2.80]	++	
Marik et al.	5	10	6	10	1.20 [0.54-2.67]		
Ruokonen et al.	4	5	3	5	0.75 [0.32-1.74]	-	i.
Mathur et al.	14	25	19	25	1.36 [0.90-2.05]	+	_
De Backer et al.	249	502	291	542	1.08 [0.98-1.19]	•	
Patel et al.	51	118	67	134	1.16[0.89-1.51]	- +	
Overall	330	676	396	732	1.12 [1.01-1.20]		
						0 1	2 3



/asopressin as an alternative?

VASOPRESSIN

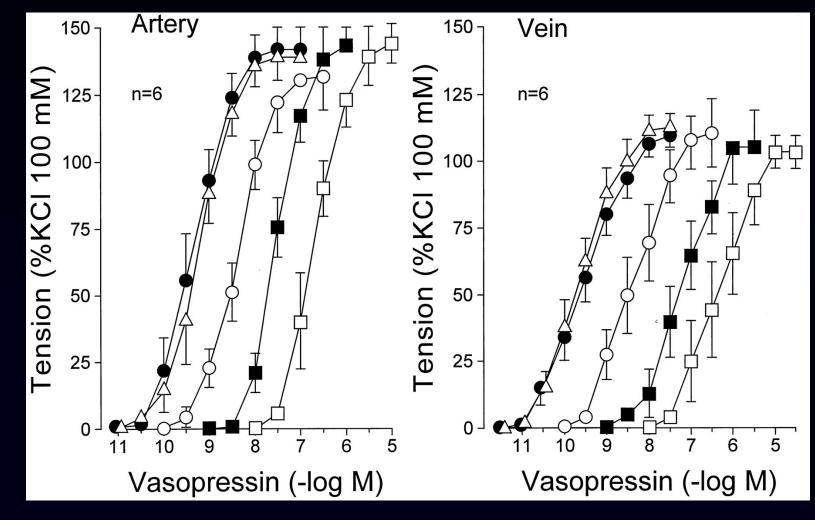
Nonapeptide hormone ynthetized in supraoptic and paraventricular nuclei of the hypothalamus


Transported and stored n the posterior pituitary

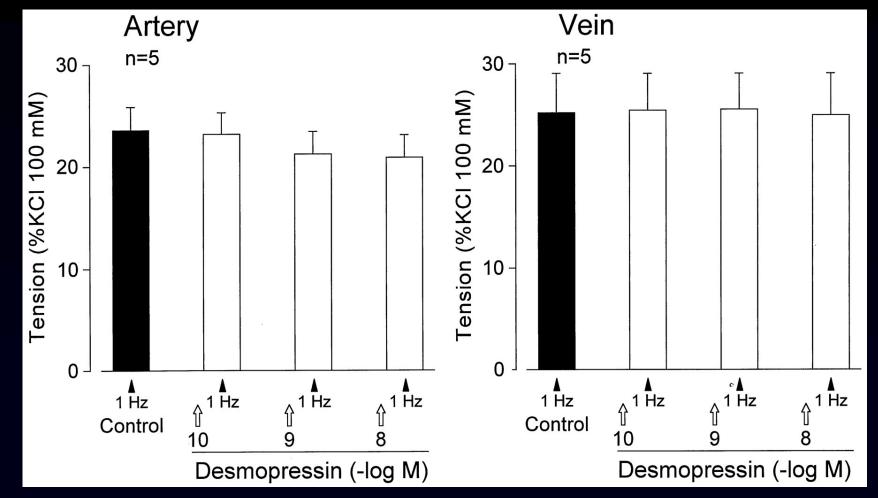
Holmes et al Chest 120:989;2

Pressure regulation

Segarra et al J Pharm Exp 7 286: 1315; 199

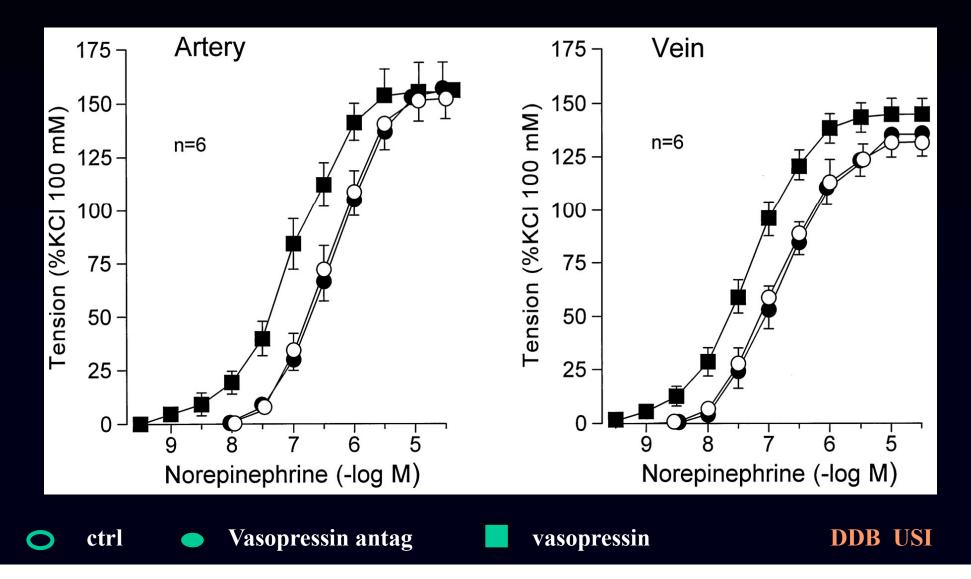

Vasopressin induces arterial and venous constriction

DDB U


Segarra et al J Pharm Exp 286: 1315; 199

1 receptor receptors are implicated in vasopressin induced vasoconstriction

ctrl


Segarra et al J Pharm Exp 7 286: 1315; 199

V1 but not V2 receptor stimulation induces arterial and venous constriction

V1 receptor stimulation potentiates the pressor effects of alpha adrenergic agents

Segarra et al J Pharm Exp Ther 286: 1315; 1998

•V1 receptor => vasoconstriction phospholipase C and increased intracellular [CA]

•V2 receptor => antidiuretic action via adenylate cyclase stimilation and generation of cAMP

•V1 receptor => vasoconstriction vascular smooth muscle kidney, platelets, uterus

•V2 receptor renal collecting duct (cAMP) => antidiuretic action endothelium => dilation (NO) platelets => aggregation

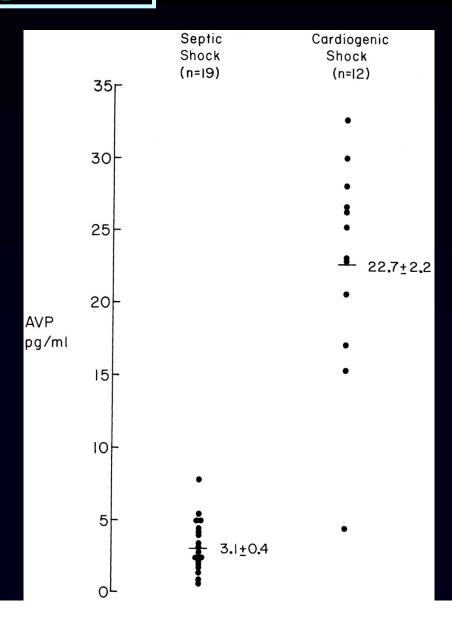
•V3 receptor pituitary => ACTH release

•OTR receptor uterus => vasoconstriction endothelium => vasodilation (NO)

VASOPRESSIN

sopressin deficiency in (septic) shock

•Depletion of neurohypophysal stores excessive stimulation (hypoxia, acidosis, hypotension) only 20% VP pool can be released

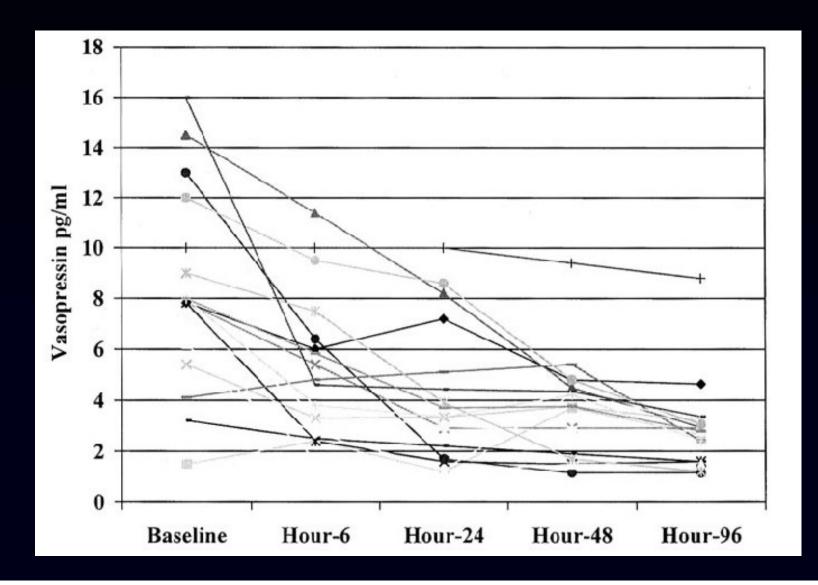

•Decreased stimulation of VP release impaired autonomic reflexes inhibition by atrial stretch receptor (volume loading, mech vent)

•Inhibition of VP release high NO and norepinephrine levels inhibit VP release

VASOPRESSIN

sopressin deficiency in septic shock

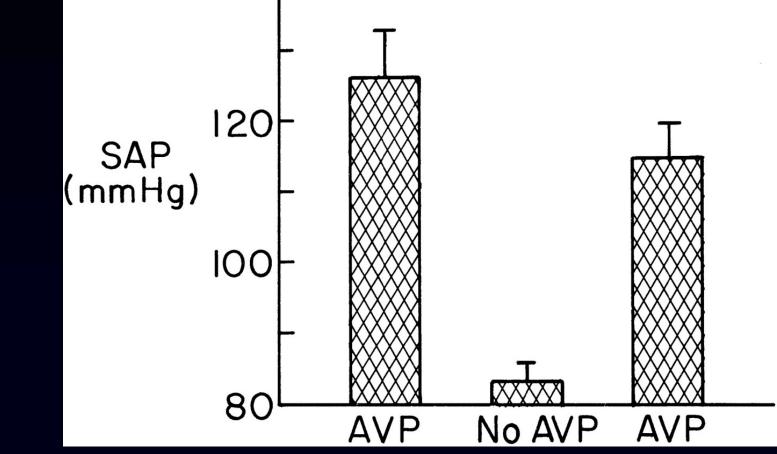
Landry et al Circ 95:1122;1997



Vasopressin levels in septic shock

Sharshar et al CCM 31:1752

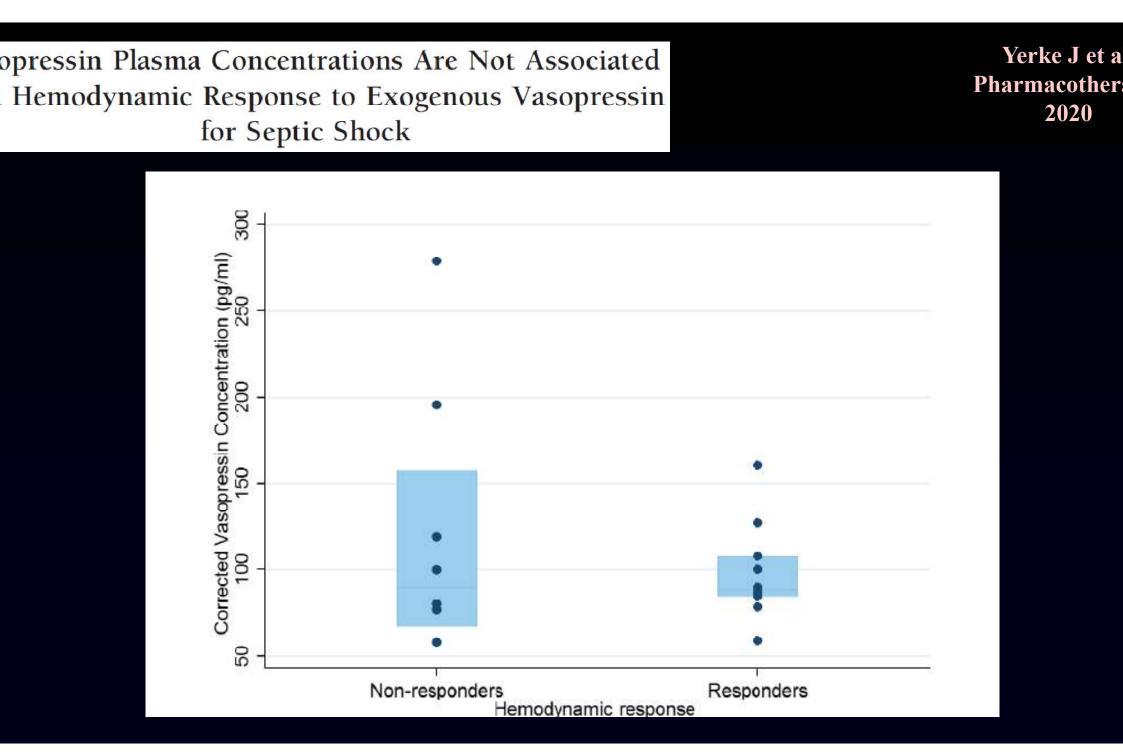
levels decrease with time



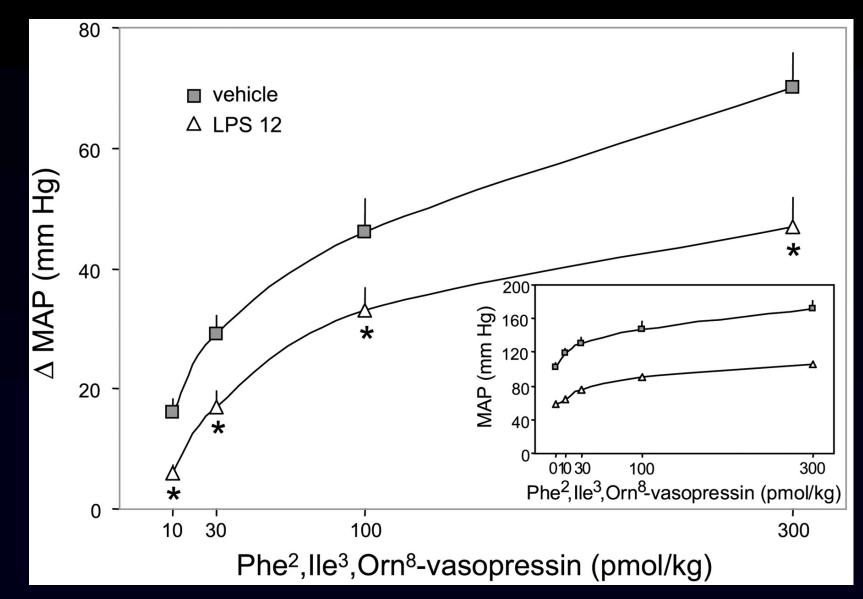
tic shock n=18

VASOPRESSIN

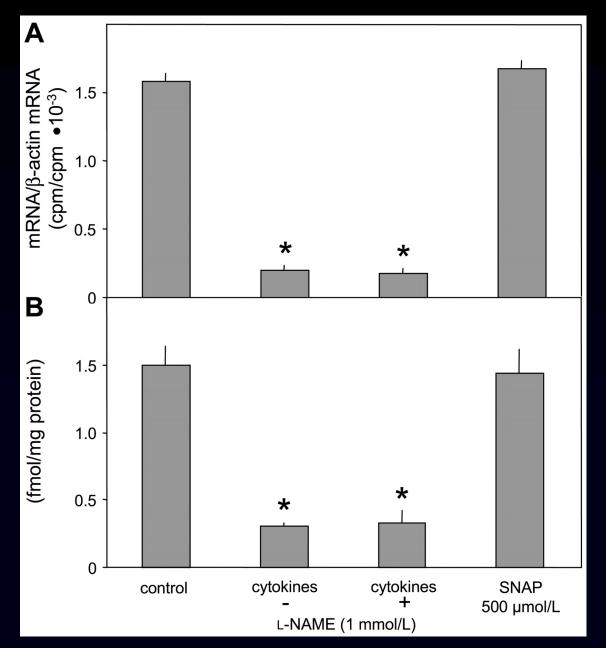
opressin deficiency in septic shock


Landry et al Circ 95:1122;19

=> restoration of blood pressor by the administration of a small dose of vasopressin (0.04 u/min) normalizing VP levels

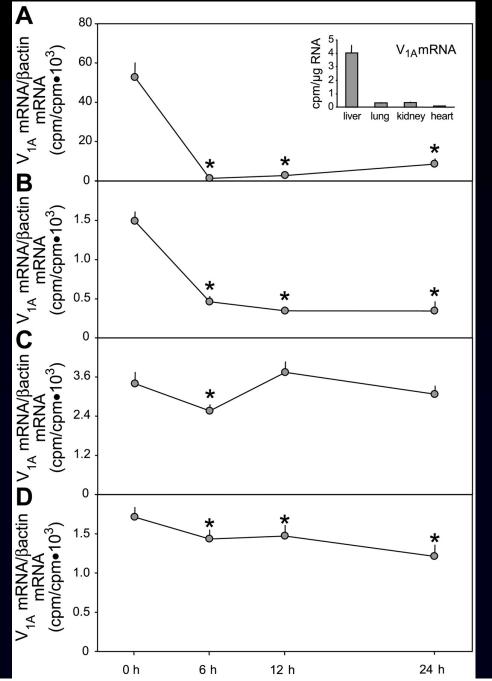

140

DDE

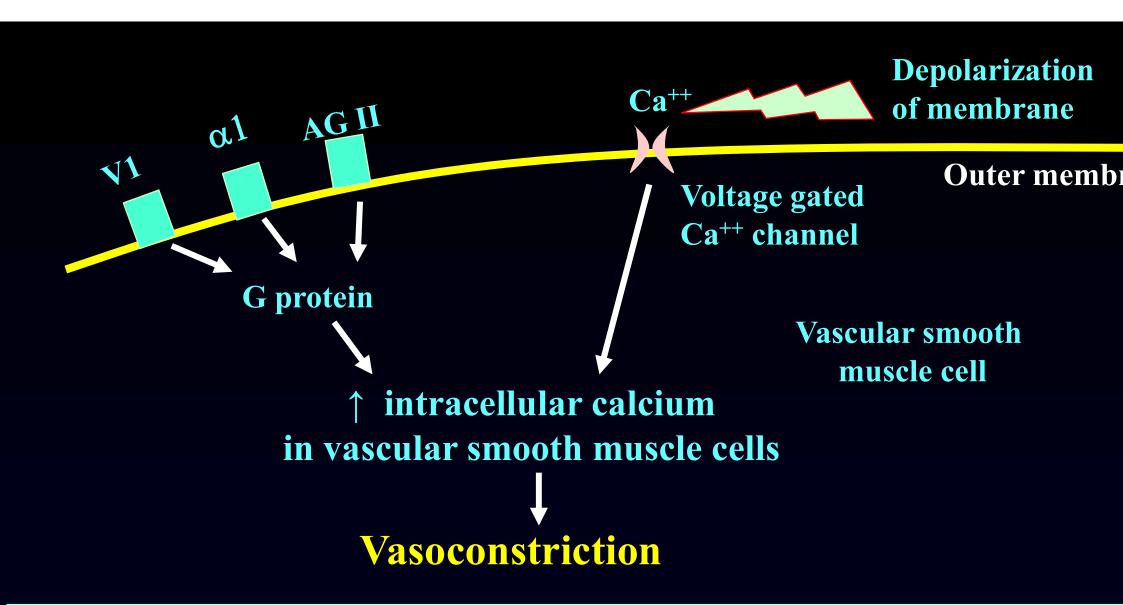

WN REGULATION OF VASOPRESSIN RECEPTORS

Bucher et al AJP 282:R979

=> decreased sensibility to vasopressin in sepsis


WN REGULATION OF VASOPRESSIN RECEPTORS

Bucher et al AJP 282:R979;20

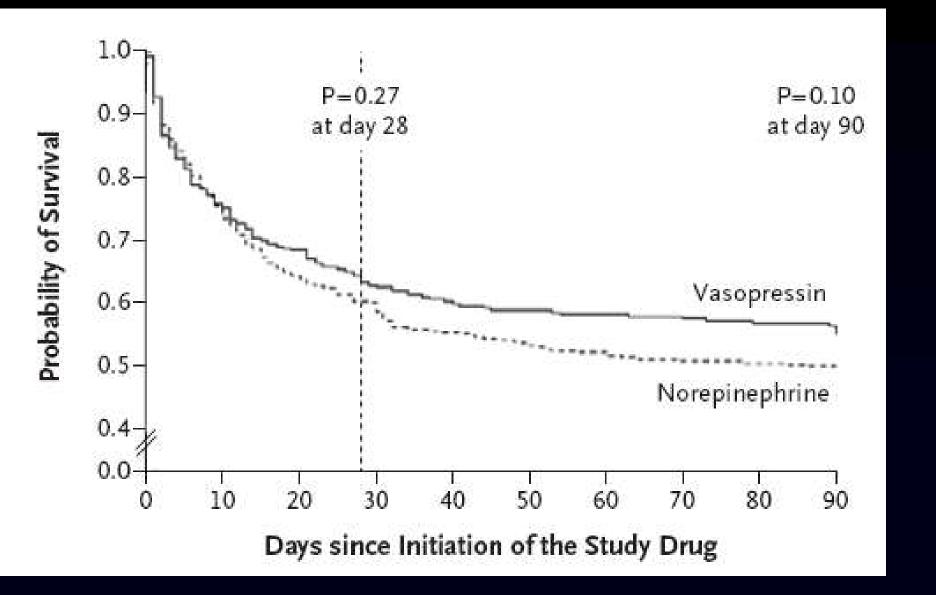

Related to cytokines, independently of NO

WN REGULATION OF VASOPRESSIN RECEPTORS

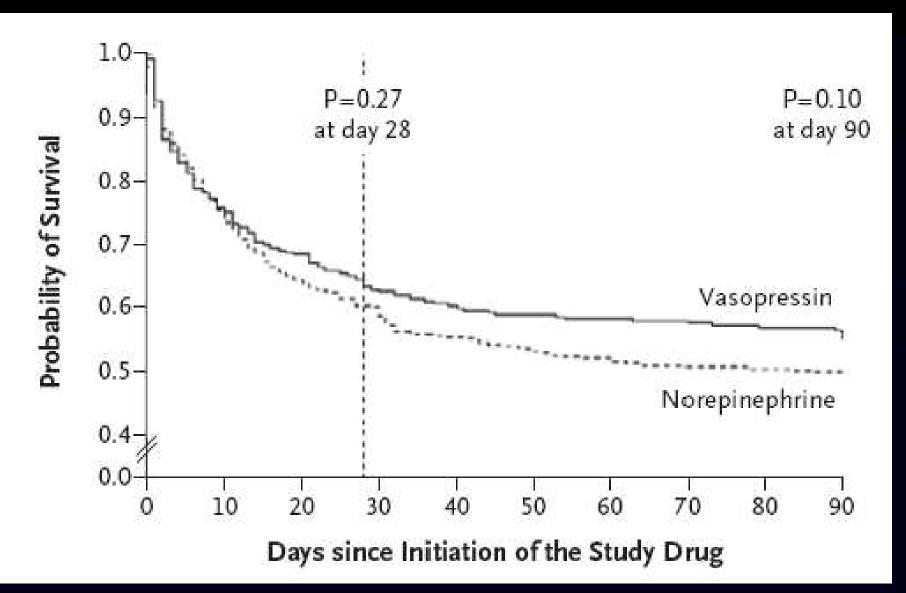
Bucher et al AJP 282:R979;2002

Rapid decrease in V1 receptor mRNA transcription in various organs

Differences arise due to receptor sensitivity and disposition in the vascular system, as well as stimulation of other receptors (beta/V2...)

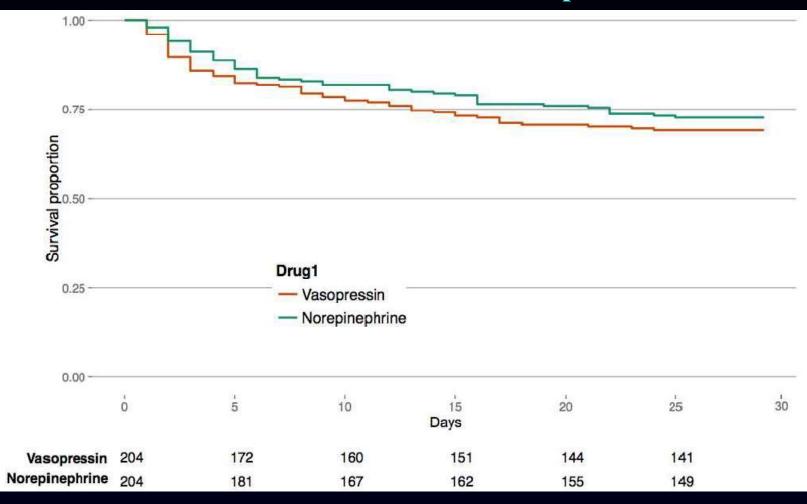

Evans ICM 2 CCM 2

For adults with septic shock on norepinephrine with inadequate mean arterial pressure levels, we suggest adding vasopressin instead of escalating the dose of norepinephrine.


Russell et al NEJM 358:877

802 septic shock pts

Russell et al NEJM 358:877;2

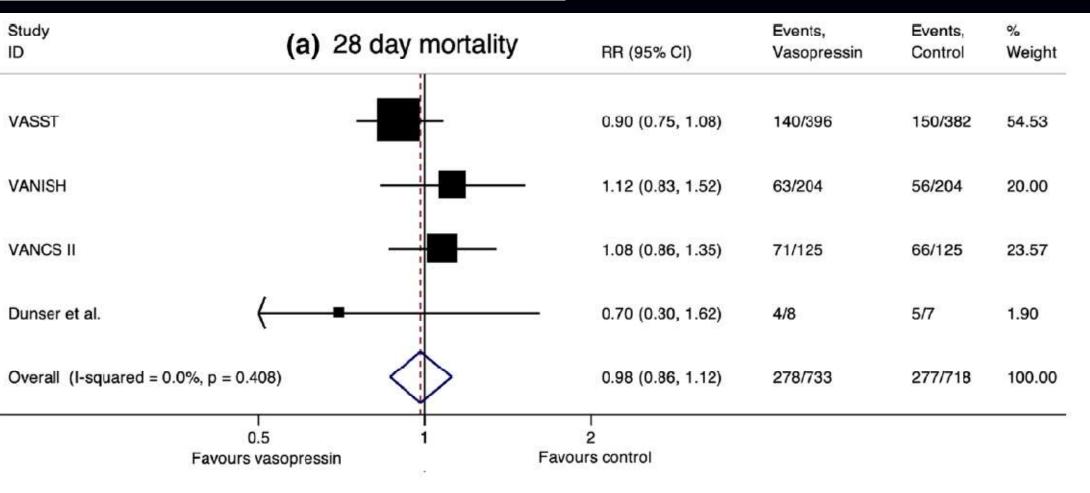

septic shock pts

ginal Investigation

of Early Vasopressin vs Norepinephrine on Kidney e in Patients With Septic Shock ANISH Randomized Clinical Trial

A double-blind randomised controlled trial of vasopressin (up to 0.06 u/min) vs noradrenaline within 6h of onset of septic shock.

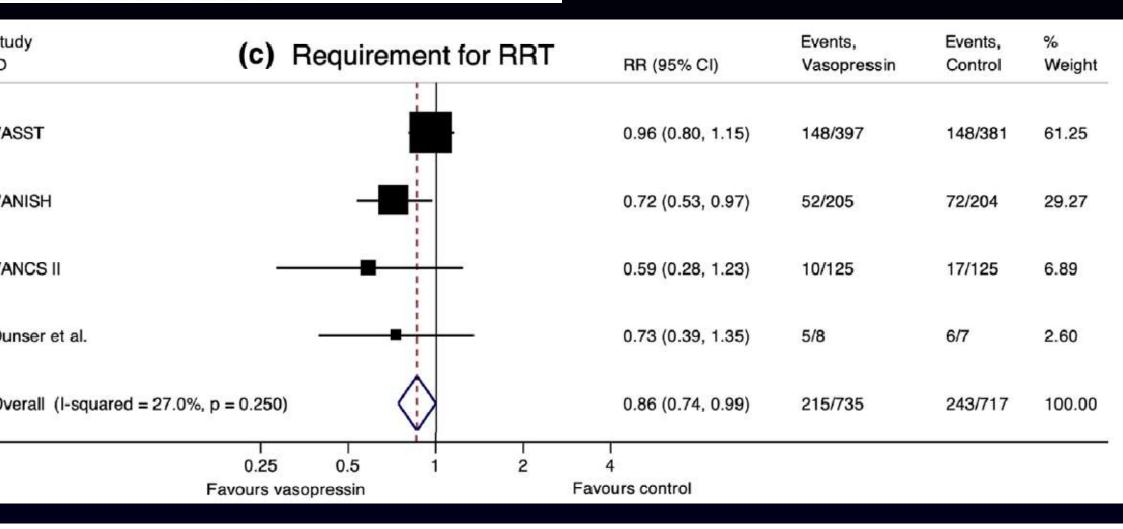
rdon, MD; Alexina J. Mason, PhD; Neeraja Thirunavukkarasu, MSc; Gavin D. Perkins, MD; Maurizio Cecconi, MD; a, MD; David G. Pogson, MB BCh; Hollmann D. Aya, MD; Aisha Anjum, BSc; Gregory J. Frazier, MSc; tumaran, MSc; Deborah Ashby, PhD; Stephen J. Brett, MD; for the VANISH Investigators


epi dose at randomization: 0.16 [0.10-0.31] mcg/kg.min

STEMATIC REVIEW

sopressin in septic shock: an individual atient data meta-analysis of randomised ontrolled trials

ra Nagendran¹, James A. Russell², Keith R. Walley², Stephen J. Brett^{1,3}, Gavin D. Perkins⁴, Luchmi'a Hajjar⁵, ina J. Mason⁶, Deborah Ashby⁷ and Anthony C. Gordon^{1,3*}


ICM 201

STEMATIC REVIEW

sopressin in septic shock: an individual tient data meta-analysis of randomised ntrolled trials

Check for updates ICM 2

a Nagendran¹, James A. Russell², Keith R. Walley², Stephen J. Brett^{1,3}, Gavin D. Perkins⁴, Ludhmila Hajjar⁵, na J. Mason⁶, Deborah Ashby⁷ and Anthony C. Gordon^{1,3*}

JAMA | Original Investigation

Association of Vasopressin Plus Catecholamine Vasopressors vs Catecholamines Alone With Atrial Fibrillation in Patients With Distributive Shock A Systematic Review and Meta-analysis

William F. McIntyre, MD; Kevin J. Um, BA; Waleed Alhazzani, MD, MSc; Alexandra P. Lengyel; Ludhmila Hajjar, MD; Anthony C. Gordon, MD; François Lamontagne, MD, MSc; Jeff S. Healey, MD, MSc; Richard P. Whitlock, MD, PhD; Emilie P. Belley-Côté, MD, MSc

JAMA

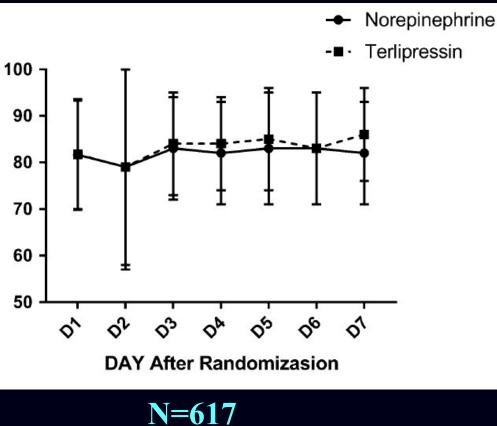
23 studi

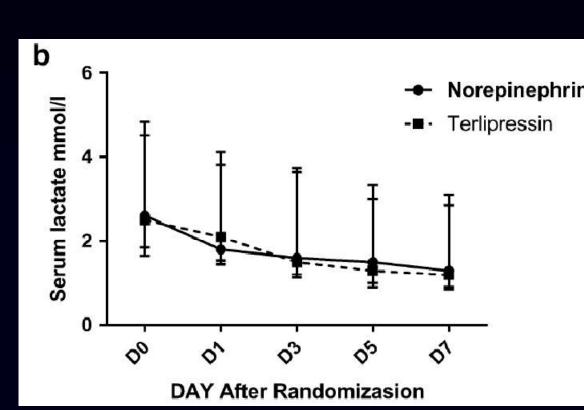
Vasopressin + Catecholamine ^a		Catecholamine Alone			Favors	· Favors	
No. With	h Total No.	No. With	Total No.			•	
Events	of Patients	Events	of Patients	Risk Ratio (95% CI)	+ Catecholamine	Alone	Weight, %
0	17	0	17	Not estimable			1
34 1	125	40	125	0.85 (0.58-1.25)		<u>.</u>	12.0
1	42	3	42	0.33 (0.04-3.08)	←		0.4
6	41	3	41	2.00 (0.54-7.46)		>	1.0
8	24	13	24	0.62 (0.31-1.21)		<u>.</u>	3.9
0 2	205	3	204	0.14 (0.01-2.73)	٠		0.2
95 1	149	124	151	0.78 (0.67-0.89)	-		74.8
0	13	0	13	Not estimable			1
0	5	0	5	Not estimable			
1	30	4	15	0.13 (0.02-1.02)	٠	<u>1</u>	0.4
7	44	14	48	0.55 (0.24-1.23)		÷	2.7
0	31	1	21	0.23 (0.01-5.37)	*		0.2
7	13	10	17	0.92 (0.48-1.74)		<u> </u>	4.4
59 7	739	215	723	0.77 (0.67-0.88)	\diamond		100.0
3); / ² = 19	6				· · · · · · · · · · · · · · · · · · ·		
					0.2 1	.0 5.0	
9	Catechol No. With Events 0 84 1 1 6 8 0 2 95 1 0 0 1 7 0 7 0 7 7	Catecholamine ^a No. With Total No. Events of Patients 0 17 34 125 1 42 6 41 8 24 0 205 95 149 0 5 1 30 7 44 0 31 7 13	Catecholamine ^a Alone No. With Total No. No. With Events of Patients Events 0 17 0 34 125 40 1 42 3 6 41 3 8 24 13 0 205 3 95 149 124 0 13 0 0 5 0 1 30 4 7 44 14 0 31 1 7 13 10 9 739 215	Catecholamine ^a Alone No. With Total No. No. With Total No. Events of Patients Events of Patients 0 17 0 17 34 125 40 125 1 42 3 42 6 41 3 41 8 24 13 24 0 205 3 204 95 149 124 151 0 13 0 13 0 5 0 5 1 30 4 15 7 44 14 48 0 31 1 21 7 13 10 17 69 739 215 723	Catecholamine ^a Alone No. With Total No. No. With Total No. Events of Patients Events of Patients Risk Ratio (95% Cl) 0 17 0 17 Not estimable 34 125 40 125 0.85 (0.58-1.25) 1 42 3 42 0.33 (0.04-3.08) 6 41 3 41 2.00 (0.54-7.46) 8 24 13 24 0.62 (0.31-1.21) 0 205 3 204 0.14 (0.01-2.73) 05 149 124 151 0.78 (0.67-0.89) 0 13 0 13 Not estimable 1 30 4 15 0.13 (0.02-1.02) 7 44 14 48 0.55 (0.24-1.23) 0 31 1 21 0.23 (0.01-5.37) 7 13 10 17 0.92 (0.48-1.74) 69 739 215 723 <	Catecholamine ^a Alone Favors No. With Total No. No. With Total No. Favors Events of Patients Events of Patients Risk Ratio (95% Cl) + Catecholamine 0 17 0 17 Not estimable + Catecholamine 0 17 0 17 Not estimable + Catecholamine 1 42 3 42 0.33 (0.04-3.08) + Catecholamine 6 41 3 41 2.000 (0.54-7.46) + Catecholamine 8 24 13 24 0.62 (0.31-1.21)	Catecholamine ³ AloneNo. With EventsTotal No. 0 17 0 17 0 17 1 25 1 42 3 42 0 $0.04-3.08$) 6 41 3 41 2.00 $0.54-7.46$) 8 24 13 24 0.205 3 204 0.14 0.13 0 0 13 0 13 0 13 0 13 1 21 0.23 $0.02-1.02$) 7 44 14 48 0.55 0.13 0.31 1 21 0.23 0.31 1 21 0.23 0.31 1 21 0.23 0.77 0.739 215 723 0.77 $0.67-0.88)$ $3)$; $l^2 = 1\%$

Half-Life 6h

Bolus 0.5 – 1 mg /8-6h

O'Brien A Singer M Lancet 2002 Lange M et al ICM 2009


Infusion $20 - 160 \ \mu g/h$


Morelli A Crit Care 2009 Liu Z et al ICM 2018

IGINAL

rlipressin versus norepinephrine infusion in patients with septic shock: a ulticentre, randomised, double-blinded trial

eng Liu¹, Juan Chen¹, Qiuye Kou², Qinhan Lin³, Xiaobo Huang⁴, Zhanhong Tang⁵, Yan Kang⁶, Ke Li⁷, Zhou⁸, Qing Song⁹, Tongwen Sun¹⁰, Ling Zhao¹¹, Xue Wang¹², Xiandi He¹³, Chunting Wang¹⁴, uan Wu¹⁵, Jiandong Lin¹⁶, Shiying Yuan¹⁷, Qin Gu¹⁸, Kejian Qian¹⁹, Xianqing Shi²⁰, Yongwen Feng²¹, a Lin²², Xiaoshun He¹, Study Group of investigators and Xiang-Dong Guan^{1*}

Liu Z

ICM 2

CrossMark

Evans ICM 2 CCM 2

For adults with septic shock, we **suggest against** using terlipressin.

SINAL

ipressin versus norepinephrine nfusion in patients with septic shock: a Iticentre, randomised, double-blinded trial

g Liu¹, Juan Chen¹, Qiuye Kou², Qinhan Lin³, Xiaobo Huang⁴, Zhanhong Tang⁵, Yan Kang⁶, Ke Li⁷, ou⁸, Qing Song⁹, Tongwen Sun¹⁰, Ling Zhao¹¹, Xue Wang¹², Xiandi He¹³, Chunting Wang¹⁴, n Wu¹⁵, Jiandong Lin¹⁶, Shiying Yuan¹⁷, Qin Gu¹⁸, Kejian Qian¹⁹, Xianqing Shi²⁰, Yongwen Feng²¹, in²², Xiaoshun He¹, Study Group of investigators and Xiang-Dong Guan^{1*}

N=617

Liu Z e ICM 20

iable	Norepinephrine group ($N = 266$)	Terlipressin group ($N = 260$)	р
day mortality <i>N</i> (%)	101/266 (38%)	104/260 (40%)	0.633
rs alive and free of vasopressor	14.66±11.13	15.50 ± 11.14	0.424
nge of SOFA score from D0 to D7 ^a	— 6 (— 10 to 5) ^b	— 7 (— 11 to 3) ^b	0.123
Variable N (%)	Norepinephrine group ($n = 266$)	Terlipressin group ($n = 260$)	p
Acute myocardial infarction or ischaemia	4 (1.39%)	2 (0.68%)	0.45
Life-threatening arrhythmia	6 (2.08%)	7 (2.38%)	1.00
Acute mesenteric ischaemia	1 (0.35%)	3 (1.02%)	0.62
Hyponatraemia	18 (6.25%)	25 (8.5%)	0.56
Digital ischaemia	1 (0.35%)	33 (12.6%)	< 0.0001
Diarrhoea	1 (0.35%)	8 (2.72%)	0.037
Overall	31 (11.65%)	78 (30%)	< 0.01

Variable N (%)	Norepinephrine group (<i>n</i> = 266)	Terlipressin group ($n = 260$)	p
Acute myocardial infarction or ischaemia	4 (1.39%)	2 (0.68%)	0.45
Life-threatening arrhythmia	6 (2.08%)	7 (2.38%)	1.00
Acute mesenteric ischaemia	1 (0.35%)	3 (1.02%)	0.62
Hyponatraemia	18 (6.25%)	25 (8.5%)	0.56
Digital ischaemia	1 (0.35%)	33 (12.6%)	< 0.0001
Diarrhoea	1 (0.35%)	8 (2.72%)	0.037
Overall	31 (11.65%)	78 (30%)	< 0.01

of 65–75 mmHg [367]. The primary outcome was death from any cause at 28 days. The 28-day mortality in the two groups was 40% for terlipressin and 38% for norepinephrine (OR 0.93; 95% CI 0.55–1.56, p=0.80), and there were no differences in SOFA score at day 7 or vasopressor free days. More patients who received terlipressin had serious adverse events; 33 of 260 (12%) patients experienced digital ischaemia after receiving terlipressin, versus only one patient who received norepinephrine (p < 0.0001); diarrhea was also more common in the terlipressin group (2.7% versus 0.35%, p = 0.037). There were three cases of mesenteric

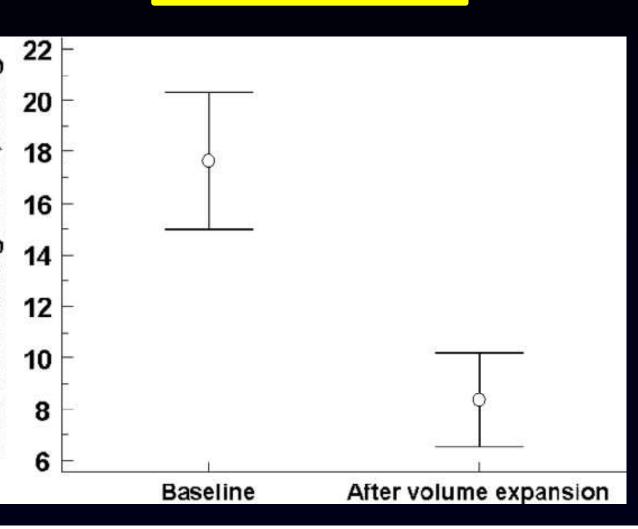
Any difference between vasopressin and terlipressin?

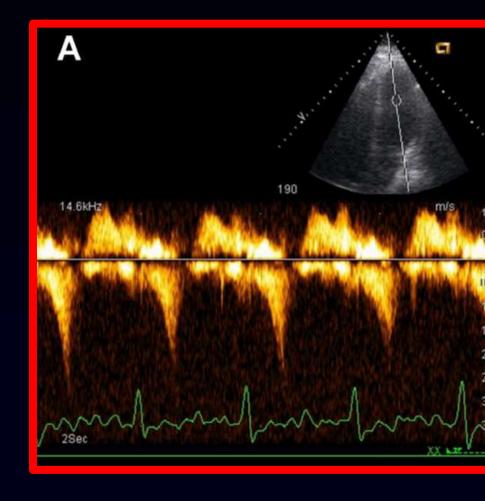
Evans L et al ICM 2021 CCM 2021

Vasopressin in septic shock: an ind patient data meta-analysis of rand controlled trials ICM 2

Myura Nagendran¹, James A. Russell², Keith R. Walley², Stephen J. Brett¹³, Gavi Alexina J. Mason⁶, Deborah Ashby⁷ and Anthony C. Gordon^{1,3*}

(5576, p = 0.057). Here were three cuses of mesente			
er Outcome	Vasopressin	Norepinephrine	ARD ^a (95% CI)
¹¹ Serious adverse events, no./total (%)	124/735 (16.9)	120/718 (16.7)	0.2 (- 3.7 to 4.0)
n Digital ischaemia	21/735 (2.9)	8/718 (1.1)	1.7 (0.3–3.2)
Mesenteric ischaemia ^b	14/727 (1.9)	18/711 (2.5)	— 0.6 (— 2.1 to 0.9)
Acute coronary syndrome	18/735 (2.5)	17/718 (2.4)	0.1 (- 1.5 to 1.7)
Arrhythmia	39/735 (5.3)	58/718 (8.1)	- 2.8 (- 0.2 to - 5.3)


Vasopressin in specific situations ?



ok carefully for LVOT obstruction !

Chauvet JL et a Crit Care 2015

218 pts septic shock => 47 pts with LVOT

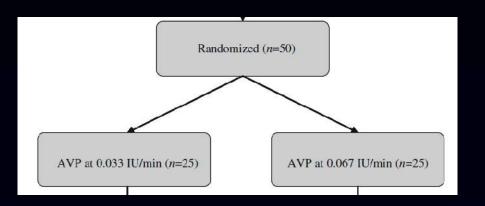
sopressin in Patients with Septic Shock and Dynamic Left ntricular Outflow Tract Obstruction

Balik M et al Cardiovasc Drug 2020

eter	LVOT CW gradient [mmHg]	MR [0–4 scale]	SAM [present /all]	NE dosage [µg/kg.min]	HR [b/min]	Lactate arterial [mmol/l]	paO ₂ /FiC [mmHg]
	78 [56–123]	3 [2–4]	10/10	0.58 [0.40–0.78]	98 [90–120]	2.5 [2.1–4.6]	103 [88–
	35 [24–60] *	2 [1–2] *	3/10	0.18 [0.14–0.30] *	93 [82–100]	1.7 [1.5–2.2] *	174 [125-

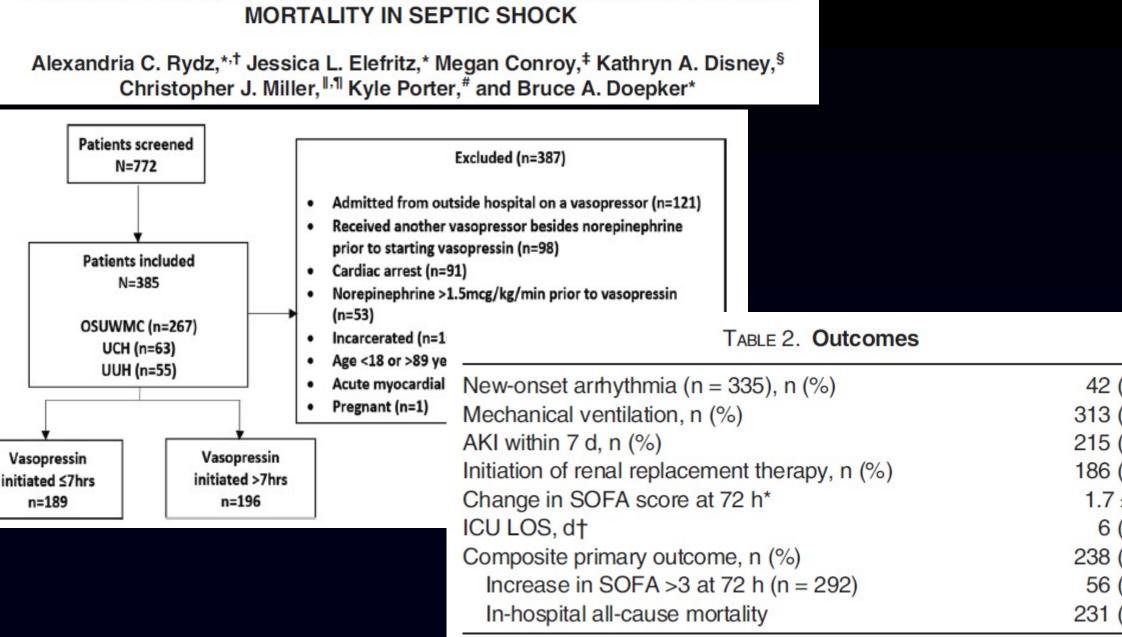
10 septic shock pts with severe LVOTO ong 527 pts with septic shock over 29 months)

Vasopressin and lanchnic ischemia ?


asopressors and Risk of Acute esenteric Ischemia: A Worldwide narmacovigilance Analysis and omprehensive Literature Review

Jozwiak M Front Med

of interest	Overall	Norepinephrine	Epinephrine	Phenylephrine	Dopamine	Vasopressin	Terlipressin	Angioter
cases	104	47	30	10	19	14	17	2
	59 (60.8%) [97]	28 (59.6%) [47]	15 (53.6%) [28]	3 (30.0%) [10]	10 (62.5%) [16]	9 (69.2%) [13]	9 (64.3%) [14]	2 (100.0
> 65 years-old	44 (47.8%) [92]	24 (53.3%) [45]	15 (53.6%) [28]	3 (37.5%) [8]	7 (43.8%) [16]	3 (25.0%) [12]	5 (35.7%) [14]	1 (50.09
us adverse event	96 (100.0%) [96]	46 (100.0%) [46]	30 (100.0%)	7 (100.0%) [7]	17 (100.0%) [17]	14 (100.0%)	14 (100.0%) [14] 2 (100.
าร	47 (49.0%) [96]	22 (47.8%) [46]	15 (50.0%)	<mark>6 (85.7%) [</mark> 7]	8 (47.1%) [17]	9 (64.3%)	8 (57.1%) [14]	0 (0.0


Comparing two different arginine vasopressin doses in advanced vasodilatory shock: a randomized, controlled, open-label trial

Torgersen C et al ICM 36:57;2010

	0.033 IU/min	0.067 IU/min	<i>P</i> -value
Decrease in cardiac index, n (%)	4 (25)	7 (50)	0.26
Increase in serum transaminases, n (%)	10 (47.6)	15 (65.2)	0.36
Increase in total bilirubin, n (%)	4 (19)	6 (26.1)	0.72
Decrease in platelet count, n (%)	15 (71.4)	17 (73.9)	1

The higher dose of VP increased more blood pressure but it was associated with more adverse effects compared to lower dose

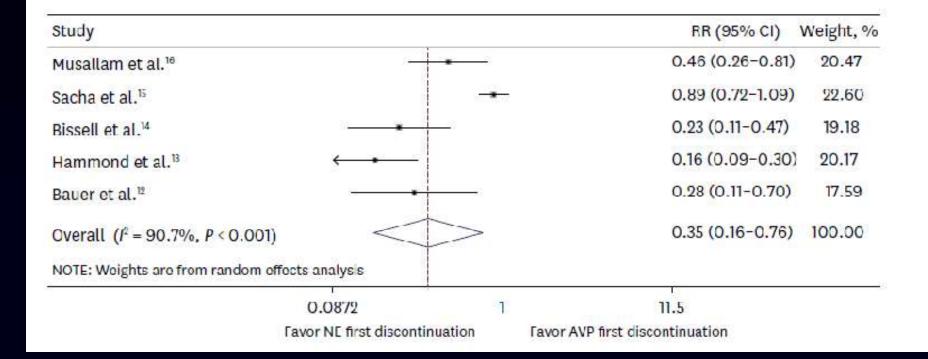
EARLY INITIATION OF VASOPRESSIN REDUCES ORGAN FAILURE AND

Shock 2022

MORTALITY IN SEPTIC SHOCK Alexandria C. Rydz,*,[†] Jessica L. Elefritz,* Megan Conroy,[‡] Kathryn A. Disney,[§] Christopher J. Miller, ^{II,1} Kyle Porter,[#] and Bruce A. Doepker* E 5. Multivariable logistic regression analysis for time to initiation of vasopressin based on 7-hour spilt able Adjusted OR (95% CI) Adjusted P Score Plot for Primary Outcome within 7 d 1.72 (1.07 to 2.77) 0.03 With 95% Confidence Limits 1.20 (0.75 to 1.93) ation of renal replacement therapy 0.09 ospital all-cause mortality 1.48 (0.94 to 2.33) 0.44 nposite primary outcome 1.53 (0.97 to 2.41) 0.07 LOS, d 3.00 (1.07 to 4.92) 0.002 ation of mechanical ventilation, h 45.3 (-1.4 to 92) 0.06 ation of NE, h 17.8 (4.8 to 30.7) 0.01 Predicted Probab 0.6 0.4 10 20 30 40

EARLY INITIATION OF VASOPRESSIN REDUCES ORGAN FAILURE AND

Shock 2022


Time from Norephinephrine to Vasopressin Initiation (hours)

Weaning vasopressor agents:

Norepinephrine first or vasopressin first?

Incidence of Hypotension after Discontinuation of Norepinephrine or Arginine Vasopressin in Patients with Septic Shock: a Systematic Review and Meta-Analysis

Song JU et al JKMS 2020

5 studies / 930 patients

Putting all together

sopressin in septic shock

Early introduction of vasopressors in severe hypotension or low diastolic pressure in addition to fluid resuscitation.

Norepinephrine as first line vasopressor agent. It is usually well tolerated and is associated with favorable hemodynamic effects.

Vasopressin derivatives are excellent adjunctiv and in some cases alternative to norepinephrin

Caution in hepatosplanchnic ischemia
Benefits in AKI and AF

