

INTOXICATIONS PAR LES INSECTICIDES INHIBITEURS DES CHOLINESTERASES ET PYRETHRINOIDES

Dr BRAHMI. N

Service de Réanimation - CAMU - Tunis

Journées de pathologies estivales et accidentelles

OBSERVATION CLINIQUE

Mr A N âgé de 72 ans hypertendu connu, consulte les urgences pour détresse respiratoire survenue 30 minutes après l'ingestion volontaire d'un produit agricole liquide et transparent.

Examen physique:

- obnubilé
- Myosis serré en tète d'épingle,
- Hypersialorrhée, encombrement bronchique,
- Vomissements, diarrhée profuses, sensibilité épigastrique
- Bradypnée, SpO₂ 80% à l'AA.
- PA: 85/60 mmHg, FC:55 bpm, marbrures généralisées.

BILAN BIOLOGIQUE

Aux GDS artériel (AA)

pH: 7,28, HCO₃ - 18 mmol/l, PaCO₂ 25 mmHg
 PaO₂ 51 mmHg, SaO₂ 86%

• A l'ionogramme sanguin:

Na+: 144 mmol/l, **K+: 2,1** mmol/l, Cl:92 mmol/L,

créatinémie: 134 µmol/, urémie: 9,8 mmol/l,

lipasémie 个: 246UI/L (4 X normale), lactates: 4,2 mmol/L

NFS, bilan d'hémostase, et hépatique normaux

01

La présentation clinique peut correspondre à une intoxication par un :

A/ insecticide inhibiteur des cholinestérases

B/ carbamate inhibiteur des cholinestérase

C/ pesticide organophosphoré

D/ raticide du type chloralose

E/ coumarinique

QUEL TOXIQUE?

PRODUITS INSECTICIDES

1- Organochlorés: 1937-1970

dichlorodyphényléthane (DDT)

hexa-chloro benzène (HCB)

2-Organophosphorés: 1944

Parathion, diazinon, dichlorvos (1950)

3- Carbamates: 1930-1955

4- Pyrethrinoïdes: 1980

~2000 produits pesticides

VOUS DEMANDEZ A LA FAMILLE DE VOUS RAMENER L'EMBALLAGE VIDE DU PRODUIT

En Tunisie, statistiques du CAMU

Dichlorvos ++ (fattek)

Diazinon++

Demeton-S- methyl

ATTENTION PARTICULIERE !!!

Q2

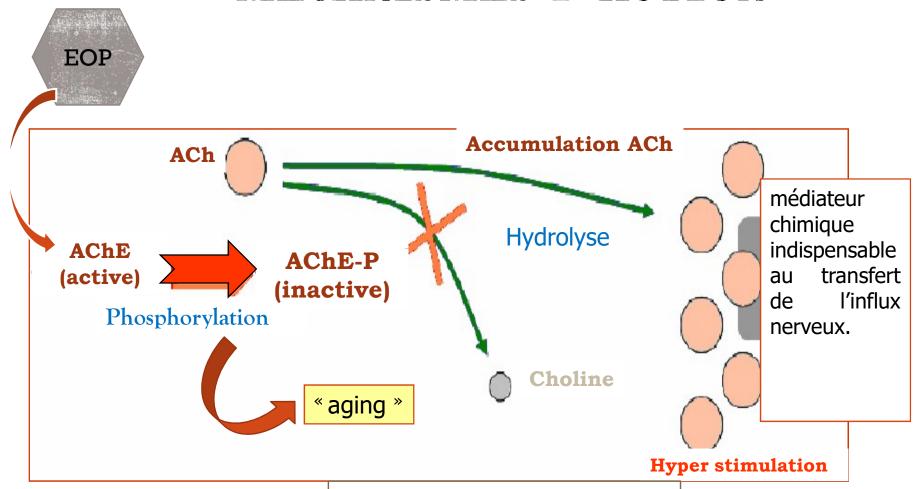
Le diagnostic clinique repose sur l'existence:

A/ d'un syndrome muscarinique

B/ d'un syndrome nicotinique

C/ d'un syndrome anticholinergique

D/ d'un syndrome encéphalique


E/ d'un syndrome sérotoninergique

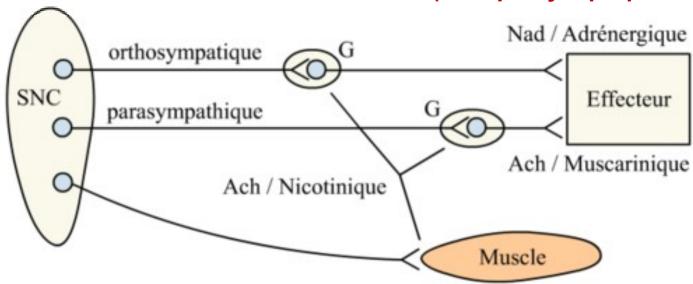
MECANISME D'ACTION

WECANISWES D'ACTION

Durée d'inhibition

Faible: carbamates

Longue: EOP


Irréversible: certains EOP

RÔLE DE L'ACETHYLCHOLINE

- 1-1- organes effecteurs postsynaptiques parasympathiques= récepteurs muscariniques
- 1-2- ganglions sympathiques (Σ) et parasympathiques (Σ) = récepteurs nicotiniques
- 1-3- fibres post-ganglionnaires présynaptiques sympathiques = récepteurs muscariniques

Modulation de la libération des catécholamines (effet présynaptique inhibiteur).

1-4- Au niveau de la plaque motrice du muscle strié squelettique : agent dépolarisant du muscle strié squelettique; cet effet est antagonisé par les curares.

SIGNES CLINIQUES NOTION DE SYNDROWE

Tableau 1 Manifestations cliniques observés lors d'une atteinte systémique aux insecticides OPs et carbamates

Manifestations muscariniques (atteinte du		
Pupilles	Myosis	
Pulmonaire	Bronchoconstriction, bronchorrhée, dyspnée, cyanose,	
	œdème pulmonaire	
Gastro-intestinale	Anorexie, vomissements, diarrhée, crampes, ténesme	
Glandes sudoripares	Diaphorèse	
Glandes salivaires	Hypersalivation	
Glandes lacrymales	Larmoiement	
Cardio-vasculaires	Bradycardie, hypotension	
Corps ciliaires	Vision trouble	
Manifestations nicotiniques		
Muscles striés (atteinte du système somatique)	Fasciculations musculaires, crampes, faiblesse et paralysie musculaires, aréflexie	
Ganglions sympathiques (atteinte du système	Hypertension, tachycardie, mydriase, pâleur	
autonome sympathique)		
Manifestations du système nerveux central		
Agitation, trémulations, confusion, somnolence, o	coma, convulsions, dépression des centres respiratoire et	
cardiovasculaire		

SIGNES CLINIQUES DE GRAVITE

• DETRESSE RESPRATOIRE

- Apnée d'origine centrale : (études expérimentales)

Atteinte centrale n'apparait pas (études humaines)

- décès précoces
- VM
- Hypoventilation périphérique: (Paralysie du diaphragme)
 Blocage de la jonction neuromusculaire:
- Atteinte directe de l'échangeur pulmonaire (muscarinique)
 - hypersécretion bronchique,
 - bronchoconstriction

SIGNES CLINIQUES DE GRAVITE

- DETRESSE RESPRATOIRE
- COMA
- Défaillance hémodynamique
 - Hypovolémie
 - Vasoplégie: A RVS
 - Atteinte de la pompe cardiaque
 - → Anomalies de la contractilité en rapport avec un dysfonctionnement de la pompe Na+/K+

Q3

Concernant les examens complémentaires à visée toxicologique:

- A/ Ils sont toujours nécessaires avant de démarrer le traitement
- **B/** La recherche de toxiques dans les urines est obligatoire au diagnostic
- C/ Le dosage de l'activité cholinestérasique sérique est l'examen de routine
- **D/** Le dosage de l'activité cholinestérasique globulaire est plus spécifique que le dosage de l'activité cholinestérasique sérique
- E/ Certains examens sont des indicateurs de gravité

CONFIRMATION DIAGNOSTIQUE

• DOSAGE DE L'ACTIVITE CHOLINESTERASIQUE

- Plasmatique (pseudocholinestérase): butyrylcholinestérase

Technique rapide Non spécifique Exposition

- Globulaire:

Plus spécifique Bon marqueur de sévérité

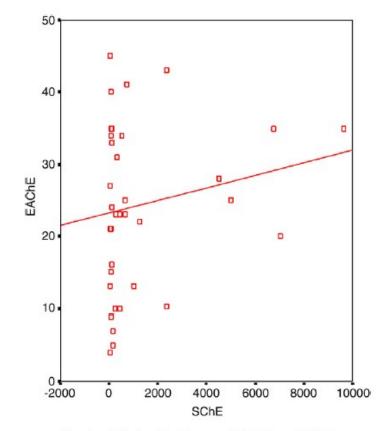


Fig. 1 Relationship between EAChE and SChE.

Hedhili A. Biochimica Clinica 1991; 15: 805-8 Worek F. Toxicology 2005; 214: 182-89

CONFIRMATION DIAGNOSTIQUE

Tableau 2 Relation entre le degré d'intoxication aux OPs et les signes et symptômes observés chez des patients

Activité AChEs*	Degré d'intoxication	Signes et symptômes
21 % - 50 %	Léger	Fatigue, paresthésie, myosis, céphalée, diaphorèse, nausée, vomissements, diarrhée, douleurs abdominales, sibilance (weezing).
11 % - 20 %	Modéré	Faiblesse, ataxie, altérations du niveau de conscience, troubles d'élocution, fasciculations musculaires, fièvre, hypersécrétion bronchique, hypertension.
0 % - 10 %	Sévère	Paralysie, perte de réflexe pupillaire, cyanose, cedème pulmonaire, hypotension, coma.

Le degré d'activité est 100 % moins le % d'AChE inhibé.

04

Quelle est votre CAT immédiate?

- A/ Prise en charge ambulatoire
- **B/** Intubation avec ventilation mécanique avec admission en réanimation
- **C/** Pratique d'un lavage gastrique
- D/ Administration de charbon activé
- E/ Administration parentérale d'un traitement antidotique

TRAITEWENT?

SYMPTOMATIQUE

EVACUATEUR

ANTICHOLINERGIQUE

ANTIDOTE ?

TRAITEMENT SYMPTOMATIQUE

- Oxygénothérapie ++++
- Intubation-ventilation mécanique si besoin (détresse respiratoire et/ou neurologique)

90/376 (24%): Eddleston M; QJM 2006; 99:513-22

58% dans les 2 heures suivant l'admission

32% > 24 heures (réapparition du syndrome cholinergique)

- Expansion volémique
- Drogue vasoactives: si état de choc

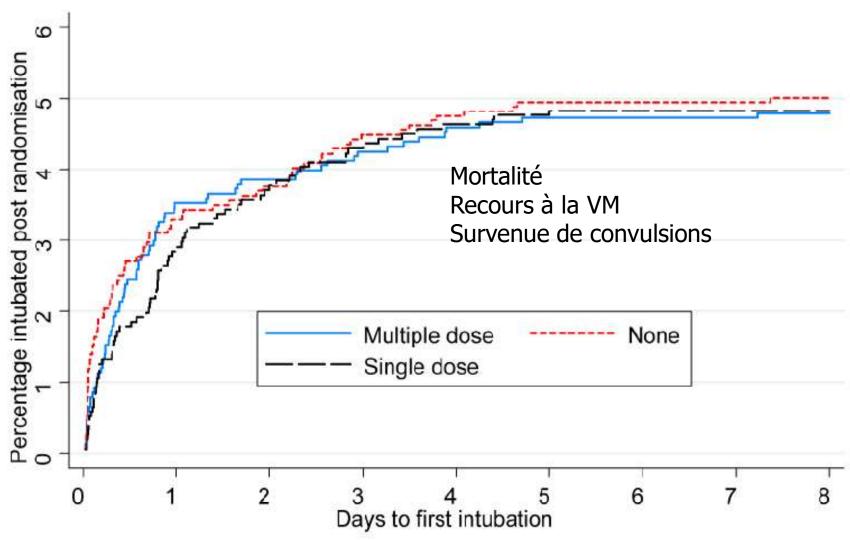
Michael Eddleston, Nick A Buckley, Peter Eyer, Andrew H Dawson

Figure 1: Management of a patient with severe organophosphorus poisoning in a Sri Lankan district hospital

DECONTAMINATION DIGESTIVE?

1- Lavage gastrique?

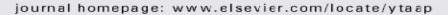
- Précocement (après stabilisation) en raison de l'absorption rapide des OP Lavage unique, abondant jusqu'à éclaircissement ++++
- Intérêt d'un lavage gastrique répété controversé Peu d'études randomisées, problème de méthodologie



CHARBON ACTIVE?

A randomised controlled trial of multiple dose activated charcoal in acute self-poisoning

Michael Eddleston 1,2,3 , Edmund Juszczak 4 , Nick A Buckley 3,5 , Lalith Senarathna 2,3 , Fahim Mohammed 2,3 , Wasantha Dissanayake 6 , Ariyasena Hittarage 6 , Shifa Azher 7 , K Jeganathan 6 , Shaluka Jayamanne 7 , M H Rezvi Sheriff 2,3 , and David A Warrell [on behalf of for the Ox-Col Poisoning Study collaborators] 1


Q5

- Quelle (s) autre(s) thérapeutique (s) spécifique faut' il instaurer?
- A/ Administration d'atropine
- **B/** Administration de pralidoxime seule
- **C/** Administration d'atropine et de pralidoxime quelque soit la gravité
- **D/** Administration d'atropine et de pralidoxime quelque soit le produit
- **E/** Administration d'atropine et de pralidoxime s'il s'agit d'un produit diethyl

Contents lists available at ScienceDirect

Toxicology and Applied Pharmacology

Review

Therapy against organophosphate poisoning: The importance of anticholinergic drugs with antiglutamatergic properties

Ben Avi Weissman*, Lily Raveh

Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona 74100, Israel

ATROPINE

- Agent anticholinergique de choix
 Atténuation des signes muscariniques
- Agit en compétition avec l'Ach au niveau des récepteurs muscariniques et des récepteurs cholinergiques centraux
- Pas d'effet sur les AChE de la jonction neuromusculaire

A QUELLE DOSE?

- Adulte
- Intoxication peu sévère et/ou modérée:
- 2 mg IV(0,03 mg/kg), toutes les 5 à 10 min, jusqu'à atropinisation

(Assèchement des sécrétions bronchiques)

Ensuite: toutes les 1 à 4 heures,

- Intoxication grave

Atropine en perfusion continue de 0,02-0,08 mg/kg/h pendant quelques heures à plusieurs jours

Remarque: Si Accès intraveineux impossible:

Recours à la voie IM, sous cutanée, intraosseuse (enfant ++), ou endotrachéale

EFFETS SECONDAIRES

- Agitation
- Globe vésical
- Mydriase, flou visuel
- Tachycardie: (n'est pas une contre-indication absolue)

Diminuer les doses ou arrêter momentanément puis renouveler à des doses

moindres

OXIMES ????

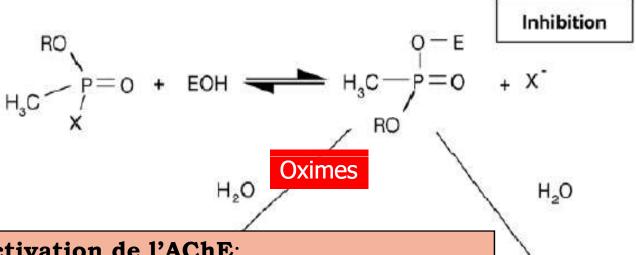
SULFATE DE PRALIDOXIME CONTRATHION ®

- Synthétisé aux USA (1950)
- Antidote spécifique du Parathion
- Action: Récepteurs nicotiniques
- Dose Recommandé par l'OMS:

Pralidoxime en bolus de 30 mg/kg puis 8mg/kg/h

ROLE DU SULFATE DE PRALIDOXIME

- La vitesse de réactivation de l'enzyme phosphorylée varie suivant la structure de l'ester OP inhibiteur. Elle dépend du groupement basique de l'OP.
- Elle est nulle pour le paraoxon qui entraîne une inhibition irréversible.
- Elle est beaucoup plus rapide pour le méthyl paraoxon.
- Le sulfate de pralidoxime n'agit pas sur les OP di-méthylés (2 xCH3)
- Certains OP qui exercent une neurotoxicité lors d'expositions prolongées, agiraient en inhibant la Nneuropathy Target Esterase (NTE) qui est retrouvée dans les cellules nerveuses des nerfs périphériques et du SNC.


Toxicology 214 (2005) 182-189

Diagnostic aspects of organophosphate poisoning

Franz Worek*, Marianne Koller, Horst Thiermann, Ladislaus Szinicz

Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany Available online 26 July 2005

Réactivation de l'AChE:

- -Déplacement du groupement phosphoryl déphosphorylation de l'AChE
- Rentre en compétition avec l'atropine au niveau des récepteurs muscariniques
- réponse sur les di-éthyl-OP H₃C Meilleur (chlorpyrifos, parathion) que sur les dimethyl (dichlorvos, diméthoate)

Q6

Au bout de 03 jours d'évolution, le patient présente un syndrome de détresse respiratoire gravissime (hypoxémie sévère Rapport $PaO_2/FiO_2 < 150 \text{ mmHg}$)

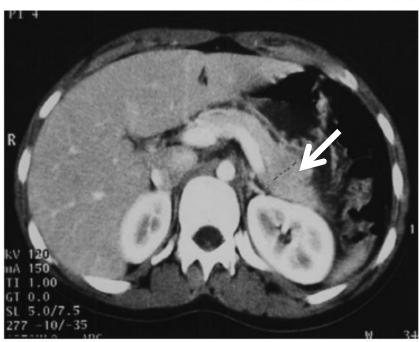
Obligation de renforcer la sédation et d'introduire les curares

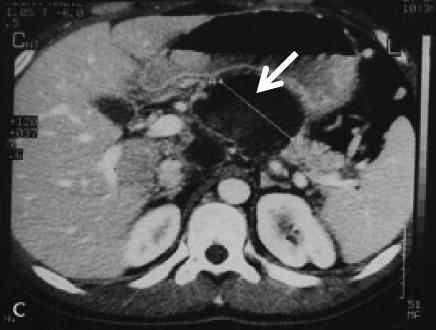
Au bilan biologique: aggravation de la lipasémie (246 → 1200 UI/L), de l'urée (15 mmol/L) et de la fonction hépatique (SGOT/SGPT: 230/185 UI/L).

Vous évoquez le diagnostic de pancréatite aiguë. Quels autres investigations envisagez vous?

A/ Echographie abdominale

B/ TDM abdominale


C/ IRM biliaire


Acute Pancreatitis Subsequent to Voluntary Methomyl and Dichlorvos Intoxication

Nozha Brahmi, MD, Youssef Blel, MD, Nadia Kouraichi, MD, Nour Abidi, MD, Hafedh Thabet, MD, and Mouldi Amamou, MD

Pancreas • Volume 31, Number 4, November 2005

FIGURE 2. Computed tomography showing pancreatitis at stage C.

EVOLUTION

L'évolution a été fatale et le patient décède au 5^{ème} jour dans un tableau d'hypoxémie réfractaire secondaire au SDRA

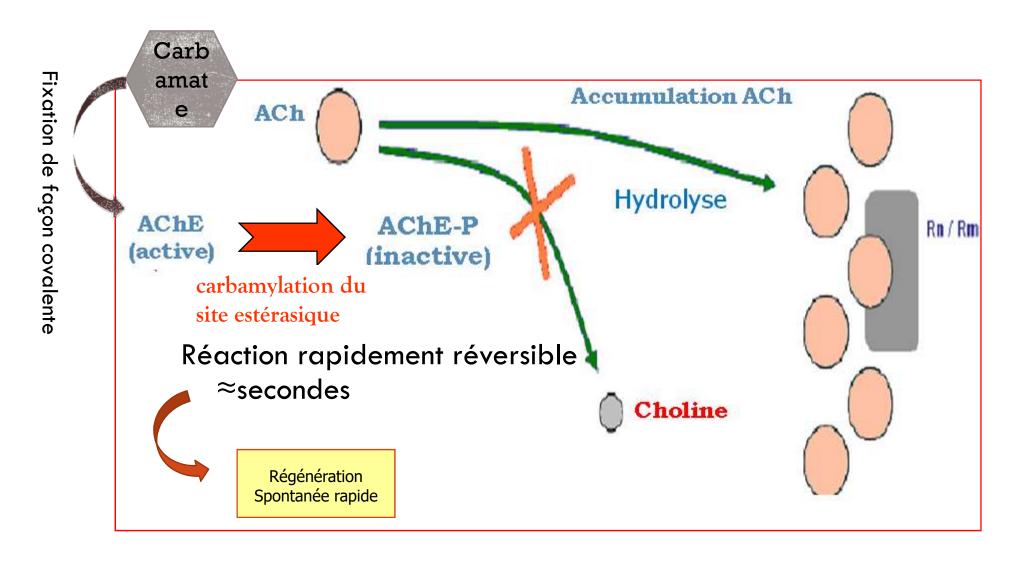
Revue de la littérature:

● Extrême orient et Afrique du sud: Mortalité 10 - 20 %

50 % si altération hémodynamique/ ventilation mécanique

INTOXICATIONS AUX CARBAMATES

LES CARBAMATES


- Les carbamates anticholinestérasiques agissent par une inhibition rapide des cholinestérases des insectes.
- Ils exercent une neurotoxicité qui explique à la fois leur efficacité comme insecticides, mais aussi leurs effets toxiques chez l'homme.
- Principaux produits commercialisés:
 Méthomyl (Lannate^R) et le carbofuran

LES CARBAMATES INHIBITEURS DES CHOLINESTERASES

MECANISMES D'ACTION

LES CARBAMATES INHIBITEURS DES CHOLINESTERASES

Symptomatologie intoxication aiguë

- ☐ Semblable à celle décrite avec EOP
- ☐ Mais brève durée (24-48 h)
- □ Diagnostic: ChE sans intérêt

TRAITEMENT

- □ Symptomatique
- ☐ ATROPINE ++++
- □ Oximes inutiles

INTOXICATIONS AUX PYRÉTHRINOIDES

LES PYRITHRINOIDES

Pyréthrinoïdes de 1ère génération

□ tétraméthrine, phénothrine...

Pyréthrinoides de 2ème génération

- □ A partir de 1973 : □ deltaméthrine, cyperméthrine, fenvalérate,...
 - □ Produits de synthèse
 - Photostables

TOXICOCINETIQUE

Absorption

- ☐ Produit pur : faible

altérations revêtements superficiels

Distribution

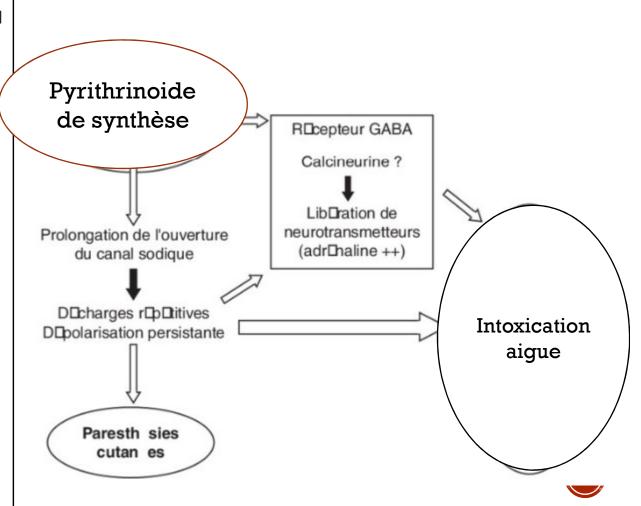
- ☐ Foie, reins, organes richement vascularisés
- □ Graisses (produit inchangé)
- □ Passage hémoméningé ++

TOXICOCINETIQUE

Métabolisme

- □ Surtout hépatique
- ☐ Métabolites inactifs

Elimination


- □ Rénale
- □ Rapide et complète
- □ Passage dans le lait (produit inchangé)

MECANISME D'ACTION

Inhibition fermeture canaux sodiques rapides

- Aptitude à empêcher la fermeture des canaux sodiques au niveau des axones des neurones,
- Inhibition de la repolarisation des cellules nerveuses et la génération d'un potentiel d'action :
- les neurones devenant inactifs, l'animal est paralysé.

TOXICITE AIGUE

Toxicité systémique

- □ Faible pour les animaux à sang chaud
- □ Paresthésies à type de fourmillements

En cas d'intoxication massive :

- ☐ Troubles de conscience
- ☐ Hypersalivation
- ☐ Fasciculations, Myoclonies, Mouvements choréo-athétosiques
- □ Convulsions
- □ Bradycardie , Hypotension
- conduction auriculo-ventriculaire

TOXICITE AIGUE

Solvants associés

- irritation
- SNC
- □ Pneumopathie d'inhalation
- □ Association dangereuse avec anticholinestérasiques

Traitement symptomatique

TOXICITE CHRONIQUE

Paresthésies

- □ Irritation
- □ Allergies (avec dérivés naturels)
- ☐ Chez l'animal:
 - Axonopathie
 - □ Atteinte hépatique
 - □ Atteinte rénale

Induction enzymatique (perméthrine)

CONCLUSION

- Hétérogénéité clinique (>100 toxiques différents)
- Syndrome cholinergique
- Diagnostic clinique ± biologique
- Traitement: Réanimation + Atropine
- Manque de données pour décontamination et les oximes.
- Mortalité élevée

REDACTION DU CERTIFICAT DE DECES

