

L'Association Tunisienne de Réanimation

La Société Tunisienne d'Anesthésie d'Analgésie et de Réanimation

3 JOURNÉE COMMUNE de RÉANIMATION

Evaluation préopératoire des patients obèses

Ben Souissi Asma

Service d'Anesthésie-Réanimation-SMUR

CHU Mongi Slim La Marsa

Le 30 Juin 2018, à L'Hôtel Le Royal Hammamet

Introduction

18 October 2017

- Nombre de personnes obèses a triplé depuis 1975
- 2016: plus de 1,9 MDS adultes en surpoids et plus de 650 millions sont obèses
- 41 M enfants < 5 ans sont en surpoids ou obèses et
- > 340 M < 19 ans sont obèses

Dossier thématique

Pourquoi le patient obèse morbide est-il un patient à risque anesthésique élevé ?

-Fréquemment associée à des comorbidités:

- Respiratoires: pas uniquement le SAOS
- Cardiovasculaires
- Métaboliques
- Plus de risque thromboembolique

Accès difficile aux voies aériennes et au capital veineux Position peropératoire

Position peropératoire
Ventilation péri
opératoire
Morphiniques

ORIGINAL SCIENTIFIC REPORT

The Effect of Body Mass Index on Perioperative Outcomes After Major Surgery: Results from the National Surgical Quality Improvement Program (ACS-NSQIP) 2005–2011

- -n= 141 802 patients âgés de plus de 16 ans
- -Chirurgies majeures
- -74% BMI disturbance; the majority being overweight: 35,3% or obese 30%

The Effect of Body Mass Index on Perioperative Outcomes After Major Surgery: Results from the National Surgical Quality

Improven	nent Progra	m (ACS	S-NSQIP	P) 2005–2	2011		
Variables	Overall	<18.5	18.5–24.9	25.0–29.9	30–39.9	≥40	p

Variables	Overall	<18.5	18.5–24.9	25.0–29.9	30–39.9	≥40	p

525 (13.2)

2594 (65.3)

1751 (44.1)

842 (21.2)

916 (23.1)

Comorbidities, n (%)

Diabetes

Hypertension

Cardio-pulmonary

Other comorbidities

Cerebrovascular

32,064 (22.6)

102,654 (72.5)

56,217 (39.6)

25,052 (17.7)

17,577 (12.4)

Variables	Overall	<18.5	18.5–24.9	25.0–29.9	30–39.9	≥40	р

5329 (14.2)

24,958 (65.7)

14,129 (37.8)

7101 (19.0)

5836 (15.6)

10,285 (20.6)

35,837 (71.6)

19,693 (39.4)

9143 (18.3)

5881 (11.8)

12,731 (30.1)

33,066 (78.1)

17,368 (41.0)

6959 (16.4)

4355 (10.3)

3194 (39.6)

6559 (81.3)

3276 (40.6)

1007 (12.5)

589 (7.30)

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

Improver	nent Progra	m (ACS	S-NSQII	P)	2005–2	2011		
Variables	Overall	<18.5	18.5-24.9	П	25.0-29.9	30-39.9	≥40	р

The Effect of Body Mass Index on Perioperative Outcomes After Major Surgery: Results from the National Surgical Quality Improvement Program (ACS-NSOIP) 2005–2011

		- (120		2)				
Variables	Overall	<18.5	18.5–2	24.9	25.0–29.9	30–39.9	≥40	p
Number of patients (%) Complications, n (%)	141,802 (1	.00) 3,971	1 (2.8) 37,	422 (26.4)	50,023 (35.3)	42,319 (29.8)	8,067 (5.7)	-
Overall complications	19,191 (13	3.5) 751 ((18.9) 539	95 (14.4)	6219 (12.4)	5538 (13.1)	1288 (16.0)	<0.001
Cardiovascular complications	1817 (1.30)) 74 (1	.90) 577	(1.50)	636 (1.30)	459 (1.10)	71 (0.90)	<0.001
Pulmonary complications	6329 (4.50)) 348 ((8.80) 203	88 (5.40)	2013 (4.00)	1610 (3.80)	320 (4.00)	<0.001
Neurological complications	1167 (0.80)) 56 (1	.40) 358	3 (1.00)	399 (0.80)	296 (0.70)	58 (0.70)	<0.001
Thromboembolic complications	1977 (1.40	0) 61 (1	.50) 458	3 (1.20)	652 (1.30)	660 (1.60)	146 (1.80)	<0.001
Sepsis/shock complications	4877 (3.40	238 ((6.00) 153	33 (4.10)	1607 (3.20)	1222 (2.90)	277 (3.40)	<0.001
Renal failure complications	1602 (1.10	0) 62 (1	.60) 397	(1.10)	506 (1.00)	491 (1.20)	146 (1.80)	< 0.001
LITI complications	3017 (2.10	n 117 ((2.00) 880	(2.40)	955 (1.90)	846 (2.00)	210 (2.60)	-0.001

Number of patients (%)	141,802 (100)	3,971 (2.8)	37,422 (26.4)	50,023 (35.3)	42,319 (29.8)	8,067 (5.7)	_
Complications, n (%)							
Overall complications	19,191 (13.5)	751 (18.9)	5395 (14.4)	6219 (12.4)	5538 (13.1)	1288 (16.0)	<0.001
Cardiovascular complications	1817 (1.30)	74 (1.90)	577 (1.50)	636 (1.30)	459 (1.10)	71 (0.90)	< 0.001
Pulmonary complications	6329 (4.50)	348 (8.80)	2038 (5.40)	2013 (4.00)	1610 (3.80)	320 (4.00)	< 0.001
Neurological complications	1167 (0.80)	56 (1.40)	358 (1.00)	399 (0.80)	296 (0.70)	58 (0.70)	<0.001
Thromboembolic complications	1977 (1.40)	61 (1.50)	458 (1.20)	652 (1.30)	660 (1.60)	146 (1.80)	<0.001
Sepsis/shock complications	4877 (3.40)	238 (6.00)	1533 (4.10)	1607 (3.20)	1222 (2.90)	277 (3.40)	< 0.001
Renal failure complications	1602 (1.10)	62 (1.60)	397 (1.10)	506 (1.00)	491 (1.20)	146 (1.80)	< 0.001
UTI complications	3017 (2.10)	117 (2.90)	889 (2.40)	955 (1.90)	846 (2.00)	210 (2.60)	<0.001
Wound complications	7855 (5.50)	218 (5.50)	1957 (5.20)	2502 (5.00)	2507 (5.90)	671 (8.30)	< 0.001

2810 (7.50)

2299 (6.10)

465 (9.60)

767 (2.00)

4.0 (5)

3269 (6.50)

2643 (5.30)

581 (8.40)

651 (1.30)

3.0 (4)

2647 (6.30)

1998 (4.70)

510 (8.30)

419 (1.00)

3.0 (4)

480 (6.00)

395 (4.90)

112 (9.00)

91 (1.10)

3.0 (4)

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

360 (9.10)

328 (8.30)

55 (11.8)

137 (3.50)

5.0 (6)

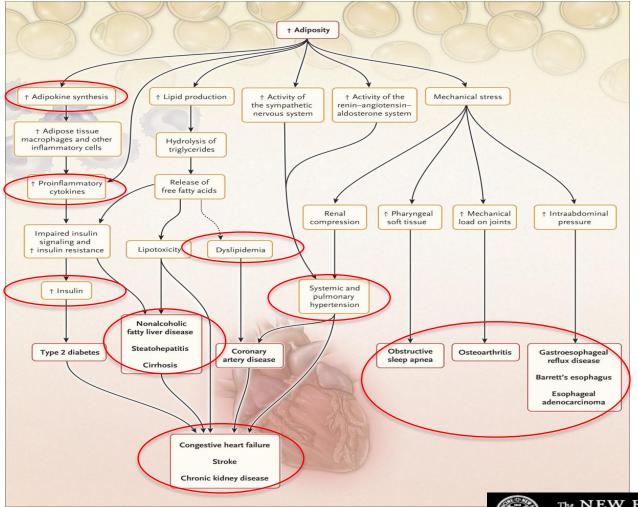
9566 (6.70)

7663 (5.40)

1723 (8.80)

2065 (1.50)

3.0 (4)


Transfusion, n (%)

Re-Intervention, n (%)

Readmission, $n (\%)^a$

Length-of-stay days, median (IQR)^b

Perioperative mortality, n (%)

Obésité: atteinte chronique, multisystémique et proinflammatoire Toute chirurgie dans la population des patients obèses est à haut risque

Rôle de l'évaluation préopératoire

Evaluation préopératoire Première étape: définir l'obésité

Calcul du BMI (Body Mass Index):

-BMI ≥ 30 obésité

- -BMI ≥ 40 obésité morbide
- -BMI ≥ 50 super obésité
- -BMI ≥ 60 super super obésité

ASA III

World Health Organization (Classifiction of BMI)

Evaluation préopératoire Première étape: définir la composition corporelle

BMI= 34

The Effect of Body Mass Index on Perioperative Outcomes After Major Surgery: Results from the National Surgical Quality Improvement Program (ACS-NSQIP) 2005–2011

Variables	Overall	<18.5	18.5–24.9	25.0–29.9	30–39.9	≥40	
Valiables	Overall	<16.5	16.5-24.9	23.0-29.9	30-39.9	≥40	p
Number of patients (%)	141,802 (100)) 3,971 (2.8	37,422 (26.4)	50,023 (35.3)	42,319 (29.8)	8,067 (5.7)	_
Complications, n (%)							
Overall complications	19,191 (13.5) 751 (18.9)	5395 (14.4)	6219 (12.4)	5538 (13.1)	1288 (16.0)	< 0.001
Cardiovascular complications	1817 (1.30)	74 (1.90)	577 (1.50)	636 (1.30)	459 (1.10)	71 (0.90)	< 0.001
Pulmonary complications	6329 (4.50)	348 (8.80)	2038 (5.40)	2013 (4.00)	1610 (3.80)	320 (4.00)	< 0.001
Neurological complications	1167 (0.80)	56 (1.40)	358 (1.00)	399 (0.80)	296 (0.70)	58 (0.70)	<0.001
Thromboembolic complications	1977 (1.40)	61 (1.50)	458 (1.20)	652 (1.30)	660 (1.60)	146 (1.80)	< 0.001
Sepsis/shock complications	4877 (3.40)	238 (6.00)	1533 (4.10)	1607 (3.20)	1222 (2.90)	277 (3.40)	<0.001
Renal failure complications	1602 (1.10)	62 (1.60)	397 (1.10)	506 (1.00)	491 (1.20)	146 (1.80)	<0.001
UTI complications	3017 (2.10)	117 (2.90)	889 (2.40)	955 (1.90)	846 (2.00)	210 (2.60)	< 0.001

1957 (5.20)

2810 (7.50)

2299 (6.10)

465 (9.60)

767 (2.00)

4.0 (5)

2502 (5.00)

3269 (6.50)

2643 (5.30)

581 (8.40)

651 (1.30)

3.0 (4)

2507 (5.90)

2647 (6.30)

1998 (4.70)

510 (8.30)

419 (1.00)

3.0 (4)

671 (8.30)

480 (6.00)

395 (4.90)

112 (9.00)

91 (1.10)

3.0 (4)

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

218 (5.50)

360 (9.10)

328 (8.30)

5.0 (6)

55 (11.8)

137 (3.50)

7855 (5.50)

9566 (6.70)

7663 (5.40)

1723 (8.80)

2065 (1.50)

3.0 (4)

Wound complications

Re-Intervention, n (%)

Readmission, $n (\%)^a$

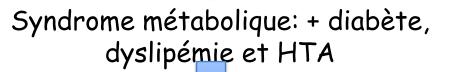
Length-of-stay days, median (IQR)^b

Perioperative mortality, n (%)

Transfusion, n (%)

Evaluation préopératoire Première étape: définir le type d'obésité

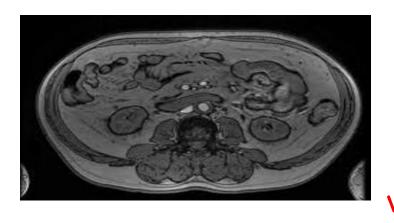
British Journal of Anaesthesia 110 (2): 172-4 (2013) doi:10.1093/bja/aes471


EDITORIAL III

Obesity anaesthesia: the dangers of being an apple

E. S. Shearer*

Obésité centrale= abdominale associée à l'augmentation de la graisse viscérale



Plus de retentissement respiratoire

Première étape: définir le type d'obésité: Obésité abdominale

Nutrition, Metabolism & Cardiovascular Diseases (2016) 26, 114-122

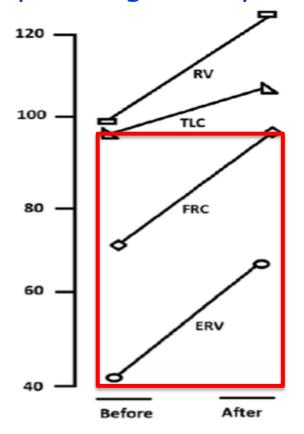
Abdominal fat radiodensity, quantity and cardiometabolic risk: The Multi-Ethnic Study of Atherosclerosis

Fat radiodensity is strongly correlated with fat quantity and relevant inflammatory biomarkers

Fat radiodensity, especially for visceral fat may be a complementary, easily assessed marker of cardio metabolic risk

Première étape: définir le type d'obésité: Obésité abdominale

Risque plus élevé si:


-Tour taille > 102 cm Homme

-TT > 88 cm Femme

RECHERCHE DE COMORBIDITÉS

Evaluation préopératoire Physiopathologie du système respiratoire chez le patient obèse

Le système respiratoire est fortement affecté par l'augmentation du poids

La fonction respiratoire évolue de manière inversement proportionnelle au BMI

En ventilation spontanée: tous les volumes pulmonaires sont diminués: CRF et VRE

Evaluation préopératoire Physiopathologie du système respiratoire chez le patient obèse

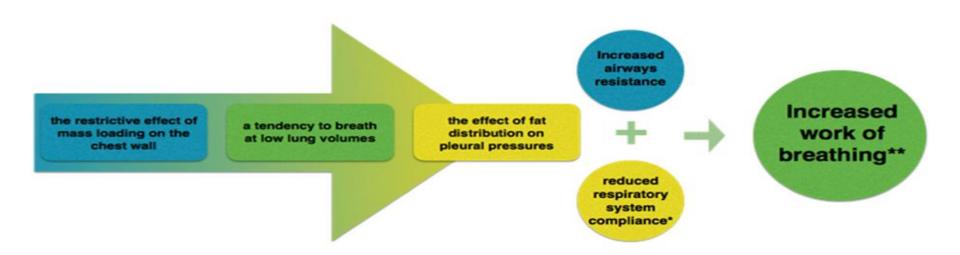
Infiltration thoracique et abdominale par le tissu adipeux: réduction des volumes pulmonaires et altérations voies aériennes

> Réduction de la course diaphragmatique

Collapsus des voies aériennes de petit calibre et atélectasies

RESPIRATORY CARE • DECEMBER 2016 Vol 61 No 12

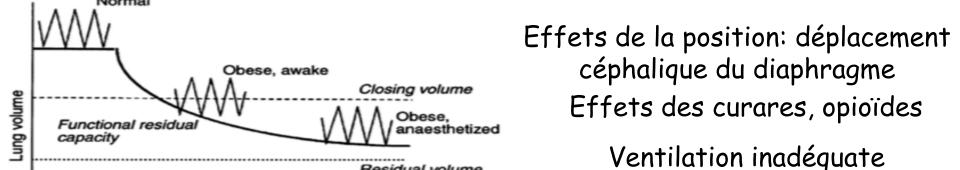
Physiopathologie du système respiratoire chez le patient obèse


Collapsus petites voies aériennes
+
Limitation du débit expiratoire

Trapping

+
hyperinflation dynamique

Auto-PEP + Altération des propriétés élastiques du poumon


Evaluation préopératoire Physiopathologie du système respiratoire chez le patient obèse

Curr Obes Rep DOI 10.1007/s13679-017-0268-5

Physiopathologie du système respiratoire chez le patient obèse

En per anesthésique

Formation d'atélectasies et altérations du rapport VA/Q

Complications respiratoires

nost-onératoires

Dépistage et traitement des complications respiratoires

Perioperative workup: Focus on Sleep related Breathing disorders

Dépistage et traitement des complications respiratoires Syndrome d'apnées du sommeil

Plus de 70% de la population des patients obèses ont un SAS

Respiration and Sleep Medicine

Section Editor: David Hillman

SPECIAL ARTICLE

Society of Anesthesia and Sleep Medicine Guidelines on Preoperative Screening and Assessment of Adult Patients With Obstructive Sleep Apnea

Table 7.	Table 7. Summary of Recommendations for Screening to Identify Patients With Suspected OSA						
Recommend	lations	Level of Evidence	Grade of Recommendation				
1.1.1	Patients with a diagnosis of OSA should be considered to be at increased risk for perioperative complications	Moderate	Strong				

Dépistage et traitement des complications respiratoires Syndrome d'apnées du sommeil

Interrogatoire du patient et de sa famille

Complications lors de précédentes interventions: Intubation difficile (SAS)
Ronflements? Épisodes d'apnées nocturnes? Réveils fréquents? Somnolence diurne? Céphalées matinales?

Dépistage et traitement des complications respiratoires Syndrome d'apnées du sommeil

Examen clinique:

Circonférence du cou Caractéristiques nasopharyngées Taille des amygdales Volume de la langue

Dépistage et traitement des complications respiratoires Syndrome d'apnées du sommeil

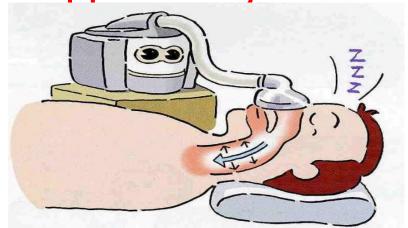
	STOP-Bang Questionnaire ¹¹⁶ (n = 177)	Berlin Questionnaire ⁶² (n = 177)	ASA Checklist ⁶² (n = 177)	P-SAP Score ¹⁴² (n = 511)
Sensitivity	83.6 (75.8–89.7)	68.9 (59.8–76.9)	72.1 (63.3-79.9)	93.9 (91.8–96.6)
Specificity	56.3 (42.3–69.6)	56.4 (42.3–69.7)	38.2 (25.4-52.3)	32.3 (23.2-46.7)
PPV ^a	81.0 (73.0–87.4)	77.9 (68.8–85.2)	72.1 (63.3–79.9)	10.0 (9.0-24.0)
NPV ^a	60.7 (46.1–74.1)	44.9 (32.9–57.4)	38.2 (25.4-52.3)	99.0 (98.0-99.0)
LR+	1.9 (1.40–2.61)	1.57 (1.17-2.36)	1.16 (0.94-1.51)	1.38 (1.37-1.39)
LR-	0.29 (0.18–0.46)	0.55 (0.39-0.79)	0.73 (0.47-1.13)	0.18 (0.16-0.21)
DOR	6.58 (3.03–14.36)	2.85 (1.48–5.50)	1.59 (0.81-3.13)	7.40 (6.48–8.45)
ROC	0.80	0.69	0.78	0.82

Syndrome d'apnées du sommeil STOP-BANG questionnaire

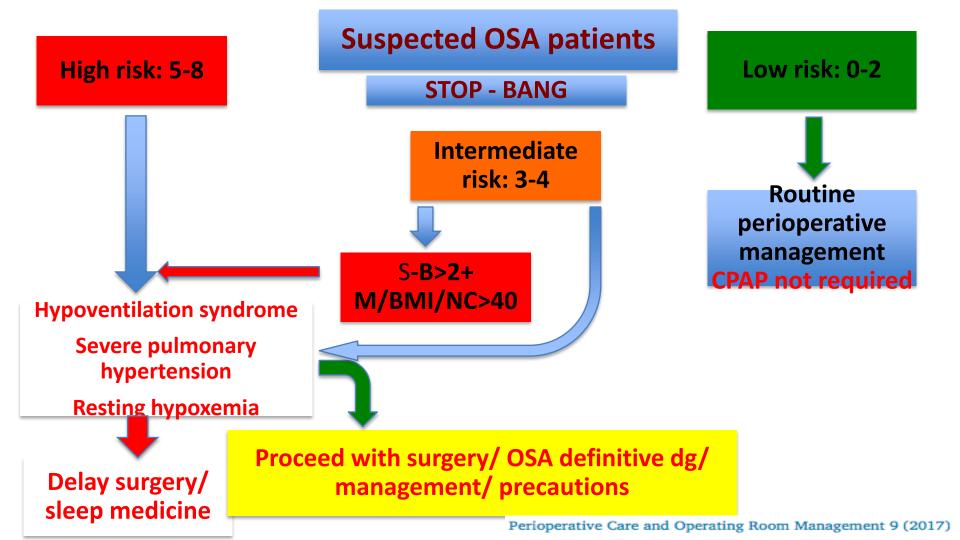
- 5: snoring
- T: tired
- O: observed apnées observées
- P: pressure HTA
- B: BMI > 35
 A: âcc > 50 cm
- A: âge > 50 ans
- N: circonférence cou > 40cm

- Risque bas: 0-2
- Risque modéré: 3-4
- Risque élevé: 5-8 Ou 2/4 STOP+ Genre M
 - Ou BMI> 35
- Ou circonférence cou

Syndrome d'apnées du sommeil


- Diagnostic: Polysomnographie
- Indice apnées-hypopnées (IAH)
- Sévérité SAS: -Léger: 5-15
 - -Modéré: 15-30
 - -Sévère > 30

Apprécier le degré de somnolence diurne

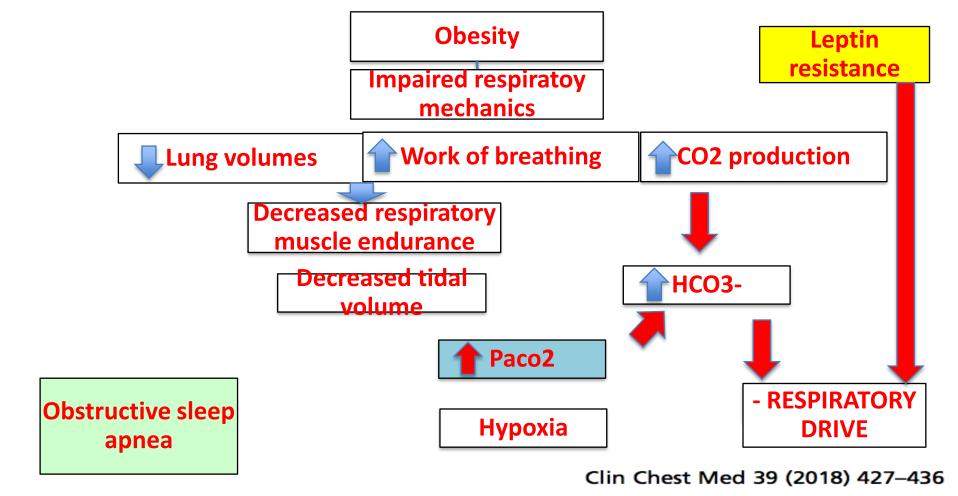


Syndrome d'apnées du sommeil

Traitement: Appareillage nocturne

IAH/ retentissement de la somnolence diurne/ comorbidités cardiovasculaires

Syndrome d'apnées du sommeil


• En pré-opératoire: Evaluer la compliance à l'appareillage nocturne Amener l'appareil Informer le patient/sa famille/le Chirurgien Etablir la stratégie de surveillance post opératoire Eparque morphinique en post opératoire BZD et morphiniques contre-indiqués en PMD

Délai optimal entre appareillage/intervention????

Dépistage et l'attendent des complications des piratoires Syndrome obésité hypoventilation

- Définition:
 - Association:
- Hypoventilation alvéolaire chronique: Pa CO2> 45 mmHg (diurne) +/- Pa O2 < 70 mmHg
- BMI > 30 Kg/M2
- Absence de toute autre cause d'hypoventilation alvéolaire
- Pout être associé au SAS

Syndrome obésité hypoventilation: Physiopathologie

Dépistage et traitement des complications respiratoires Syndrome obésité hypoventilation

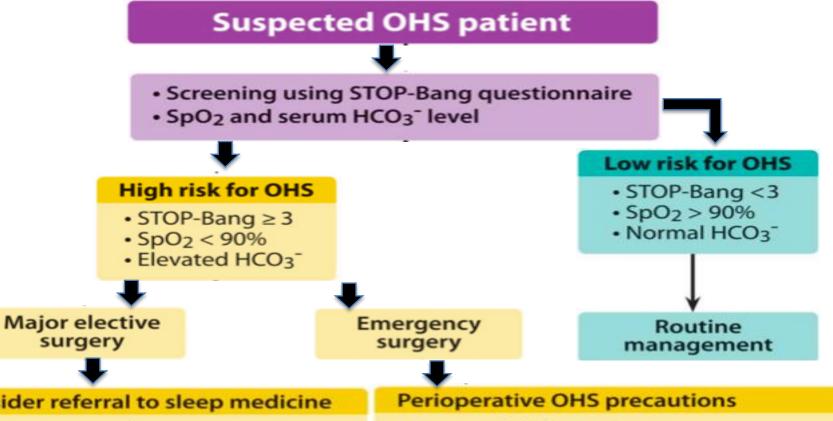
• Diagnostic:

Difficile: chevauchement des signes cliniques SOH et SAS: somnolence diurne, céphalées, apnées, ronflements....

- Diagnostic: asthme, BPCO
- SpO2 basse au repos+++
- Recherche de signes de dysfonction cardiaque droite, HTAP: ETT+++

ORIGINAL ARTICLE

Modified STOP-BANG questionnaire to predict obesity hypoventilation syndrome in obese subjects with obstructive sleep apnea


- 5: snoring
 - T: tired
 - O: observed apnées observées
 - P: pressure HTA
 - B: BMI> 35 A: âge> 50 ans
- G: genre M

+2 BMI entre 40 et 45

+2HCO3->28

+1 BMI entre 35 et 40

- +3 BMI > 45
- +1 HCO3- entre 26 et 28
- N: circonférence cou>40 mais: AUC ROC: 0,755 Score>6 DOR 7,5 vs 3,7 SBQ

Consider referral to sleep medicine

- Polysomnography
- PAP therapy titration

Consider echocardiogram to assess RV dysfunction and pulmonary hypertension

- Potential difficult airway
- Rapid emergence
- Opioid-induced ventilatory impairment
- Postextubation PAP therapy

Syndrome obésité hypoventilation Traitement

Appareillage PPC (surtout si SAS associé) en première intention puis VNI si échec

15:00-15:20 Syndrome Obésité Hypoventilation : CPAP vs VNI Pr Lamia OUANES-BESBES

Syndrome obésité hypoventilation Erreurs thérapeutiques

- Erreurs thérapeutiques:
 - Diurétiques de l'anse,
 - Oxygène à fort débit
 - Corticoïdes ...

Dépistage et traitement des complications respiratoires Autres pathologies respiratoires

- La BPCO et l'obésité sont fréquemment associées
- L'asthme est plus fréquent chez les patients obèses
- L'Overlap syndrome est défini par l'association BPCO et SAS

Ces pathologies doivent être recherchées et équilibrées en préopératoire Presse Mes 2018; 47: 453-463

Evaluation préopératoire Evaluation et gestion des voies aériennes

 Obésité et SAS: facteurs de risque indépendants de ventilation au masque et d'intubation difficiles

RESPIRATION AND THE AIRWAY

Difficult intubation in obese patients: incidence, risk factors, and complications in the operating theatre and in intensive care units

	OR	95% CI	P-value
Mallampati score III or IV	3.93	2.65-5.84	< 0.0001
Reduced mobility of cervical spine	2.29	1.51-3.48	< 0.0001
Obstructive sleep apnoea	1.96	1.19-3.22	0.009
syndrome			

Evaluation et gestion des voies aériennes

- Circonférence du cou: un indicateur supplémentaire et utile: > 60 cm augmentation de 35% de risque

Evaluation et gestion des voies aériennes

- L'intubation et la ventilation au masque difficiles doivent toujours être anticipées Algorithme précis

Guidelines

Peri-operative management of the obese surgical patient 2015

Association of Anaesthetists of Great Britain and Ireland Society for Obesity and Bariatric Anaesthesia

A robust airway strategy must be planned and discussed, as desaturation occurs quickly in the obese patient and airway management can be difficult.

- Intubation vigile nasofibroscope+++
- Factrach+++

Evaluation et gestion des voies aériennes Les vidéolaryngoscopes

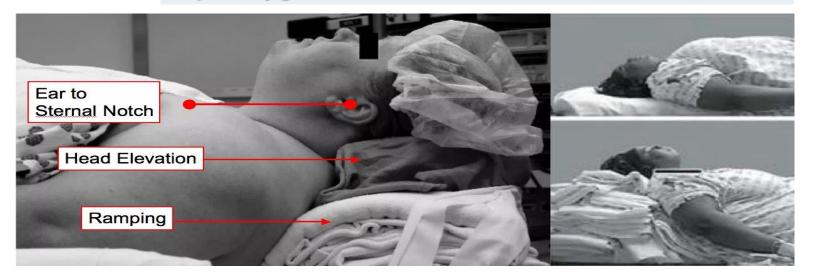
Therapeutics and Clinical Risk Management

Comparison of the glottic view during videointubation in super obese patients: a series of cases

Anticipation des difficultés de gestion des voies aériennes: Préoxygénation+++

 Patient obèse: CRF + basse, consommation d'oxygène plus importante et plus d'atélaties

Désaturation rapide après l'induction anesthésique


Préoxygénation+++

Preoxygenation and intraoperative ventilation strategies in obese patients: a comprehensive review

KEY POINTS

 Positioning obese patients head up and use of continuous positive airway pressure enhances preoxygenation.

Préoxygénation en pression positive

CPAP ou VNI: AI+PEEP

VNI: AI+PEEP: limite la diminution du volume pulmonaire après l'induction anesthésique et améliore l'oxygénation

Anesth Analg 2008;107:1707-13

Evaluation préopératoire Dépistage et traitement des complications cardiovasculaires de l'obésité

L'obésité et syndrome métabolique: risque cardiovasculaire plus élevé

Plus de complications cardiovasculaires en péri opératoire

Le facteur le plus important à considérer dans ce contexte: la tolérance à l'effort

Morbid obesity and perioperative complications 2016

Cardiomypathie de l'obésité

Atteinte cardiaque: complexe et multifactorielle

Augmentation du volume sanguin circulant et des résistances vasculaires

Hypertrophie du VG: insuffisance cardiaque gauche

FA et les troubles conductifs : plus fréquents

Insuffisance coronaire (facteurs de risque associés)

HTAP et insuffisance ventriculaire droite (pathologies respiratoires liées à l'obésité)

JACC Hear Fail.2013;1:93-102

Evaluation préopératoire Cardiomypathie de l'obésité

Examen clinique approfondi: évaluation de la tolérance à l'effort (difficile+++ mobilité limitée), PA, OMI et signes d'insuffisance cardiaque

ECG de repos: systématique++ Troubles de la conduction Bloc de branche gauche

Echographie cardiaque transthoracique: signes d'insuffisance cardiaque/ pathologie respiratoire évoluée

Hypertension Artérielle (HTA)

HTA physiopathologie complexe: facteurs neurohormonaux, système N autonome, rénaux....

Traitements multiples: IEC, ARAII souvent en première ligne.

En préopératoire: adaptation thérapeutique: HTA difficile à

Hypertension Artérielle (HTA)

Guidelines AGBI and the British Hypertension society (2016): PAS< 180 et PAD<110 for elective surgery

Anaesthesia.2016;71:326-37

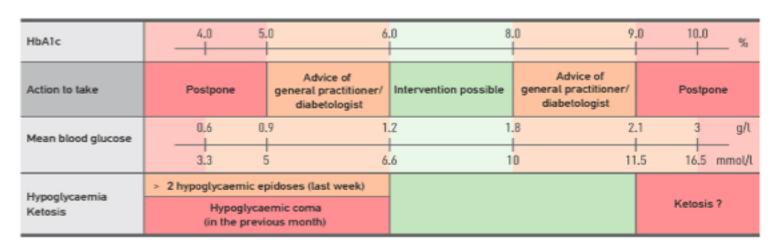
SAS: réévaluer les chiffres tensionnels et les traitements après l'appareillage

Insuffisance coronaire

Souvent asymptomatique

Tolérance à l'effort difficile à évaluer

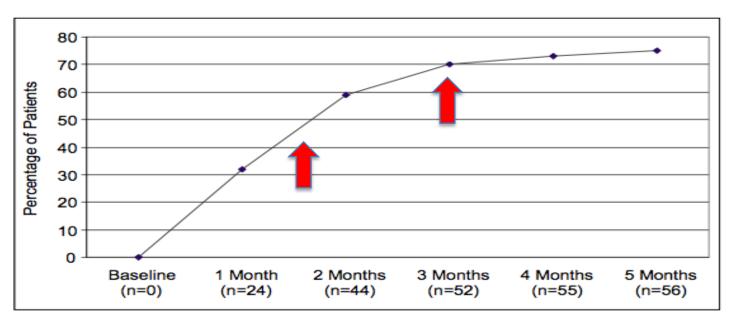
Associat


Tests d'efforts: réalisation difficile, matériel spécifique Demandés en intégrant : la tolérance à l'effort + comorbidités

Evaluation préopératoire Dépistage et traitement des complications métaboliques et nutritionnelles

- Prévalence plus élevée de diabète, résistance à l'insuline, dyslipémies et déficits Vitamines et oligoéléments
- Evaluer l'équilibre glycémique, glycémie à jeun et Hb glyquée
 Systématique
- Adaptations thérapeutiques et contrôle de la glycémie en préopératoire

Guidelines


Perioperative management of adult diabetic patients. Preoperative period

Preoperative strategy according to HbA1c and blood glucose level

Effectiveness of an Interprofessional Glycemic Optimization Clinic on Preoperative Glycated Hemoglobin Levels for Adult Patients with Type 2 Diabetes Undergoing Bariatric Surgery

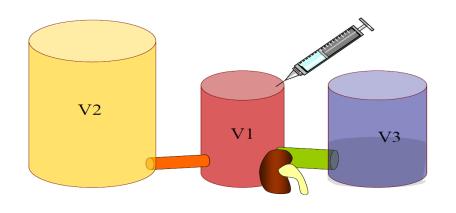
Can J Diabetes xxx (2018) 1-6

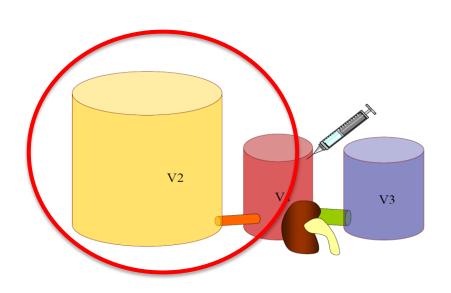
Percentage of patients achieving glycated hemoglobin target ≤7.5% according to month.

Dépistage et traitement des complications thromboemboliques

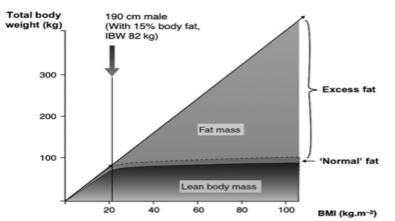
 Incidence augmentée des complications thromboemboliques: Anticipées en préopératoire

1111	omboembong	ues. Annicipi	ees en preup	erurone
	< 50 kg	50–100 kg	100–150 kg	> 150 kg
Enoxaparin Dalteparin Tinzaparin	20 mg once daily 2500 units once daily 3500 units once daily	40 mg once daily 5000 units once daily 4500 units once daily	40 mg twice daily 5000 units twice daily 4500 units twice daily	60 mg twice daily 7500 units twice daily 6750 units twice daily


Dosing schedule for thromboprophylaxis


Evaluation préopératoire Dépistage des complications digestives et choix de la séquence d'induction

- Reflux gastro-oesophagien, Hernies hiatales: plus fréquentes chez les patients obèses
- Recherche systématique à l'interrogatoire
- Antécédents d'anneau gastrique:+++
- Les indications de l'induction séquence rapide: Idem
- chez le patient non obèse (ventilation difficile+)
 Succinylcholine !!!: Dose: poids réel et fasciculations


Priviligier la séquence Rocuronium/Sugammadex

Evaluation préopératoire Choix de la technique anesthésique Considérations pharmacologiques

Choix de la technique anesthesique Considérations pharmacologiques

Perioperative Pharmacologic Considerations in Obesity

Anesthesiology Clin 35 (2017) 247-257

Table 1 Equations for dosing scalars	
BMI (kg/m²)	Weight (kg)/height (m) ²
TBW (kg)	Measured body weight
IBW (kg)	Men = $50 + (2.3 [height (in) - 60])$ Women = $45 + (2.3 [height (in) - 60])$
LBW (kg)	Men = $(9270 \times TBW)/[6680 + (216 \times BMI)]$ Women = $(9270 \times TBW)/[8780 + (244 \times BMI)]$
BSA (m) ²	0.20247 × height (m) ^{0.725} × weight (kg) ^{0.425}

Choix de la technique anesthesique Considérations pharmacologiques

Table 3 Recommendations on weight-based dosing of commonly used anesthetic drugs		
Propofol	Induction: LBW Infusion: TBW	
Etomidate	LBW	
Ketamine	IBW	
Succinylcholine	── TBW	
Vecuronium	IBW	
Rocuronium	IBW	
Cisatracurium	IBW	
Neostigmine	─── TBW	
Sugammadex		
Fentanyl	IBW	
Sufentanil		
Remifentanil	IBW	

Choix de la technique anesthesique Considérations pharmacologiques

Perioperative Pharmacologic Considerations in Obesity

Anesthesiology Clin 35 (2017) 247–257

Table 2 Partition coeffic	ients for volatile anesthetics	
Volatile Anesthetic		Blood-Gas Partition Coefficient
Isoflurane		1.46
Sevoflurane		0.65
Desflurane		0.45

Anesthésie locorégionale

Guidelines

Peri-operative management of the obese surgical patient 2015

Association of Anaesthetists of Great Britain and Ireland Society for Obesity and Bariatric Anaesthesia

Regional anaesthesia is recommended as desirable but is often technically difficult and may be impossible to achieve.

Choix de la technique anesthesique Anesthésie locorégionale

- Plus difficile techniquement: + d'échecs
- Plus de complications infectieuses si KT
- Sédation associée: Dangereuse
- Doses d'anesthésiques locaux: IBW



Obésité et obstétrique

- Plus de comorbidités: Diabète gestationnel et prééclampsie
 - Pronostic fœtal: plus de naissances prématurées
 - Plus exposées à la compression aorto-cave Accès vasculaires plus difficiles
- Alhesdreise verder MTE tetéd hémontagie plus pértiparitum

Quelque soit la technique anesthésique

Evaluer le risque d'accès vasculaires difficiles

Place de l'échographie+++

Installation adéquate

Attention

Et en ambulatoire?

REVIEW

Are morbidly obese patients suitable for ambulatory surgery?

- Patients BMI <40 peuvent être éligibles à la prise en charge: conditions+++
- Patients BMI >50: haut risque de complications
- BMI entre 40 et 50: absence de données
- Comorbidités cardiovasculaires équilibrées
- SAS: CI si mal pris en charge, nécessité d'opioïdes en postopératoire ou intervention sur les voies aériennes

Curr Opin Anesthesiol 2016, 29:141-145

Et en ambulatoire?

REVIEW

Are morbidly obese patients suitable for ambulatory surgery?

- Considérations chirurgicales: risque de saignement et possibilité d'utiliser les opioïdes en PO
- Considérations anesthésiques: Anesthésie locorégionale, anesthésiques à durée d'action courte, dose minimale de curares et d'opioïdes

Conclusion

- Prise en charge péri-opératoire des patients obèses: Challenge: risque de nombreuses complications
- Particularités physiopathologiques; nombreuses

comorbidités

- Equipes anesthésiques expérimentées dans la prise en charge des patients obèses

Merci

L'OBESITÉ BIENTOT 1800 CAUSE DE MORTALITÉ AUX USA.

