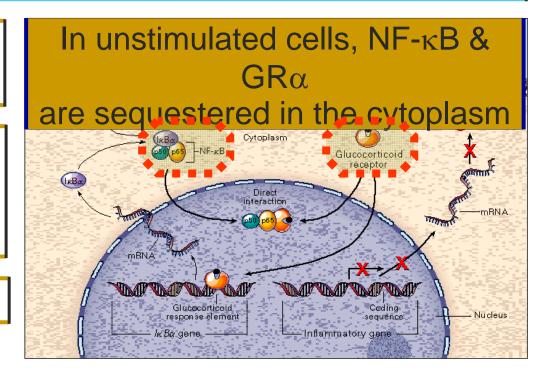


Rationale and Critical Appraisal of the Literature

Djillali Annane, MD, PhD Raymond Poincaré Hospital University of Versailles SQ Djillali.annane@rpc.aphp.fr

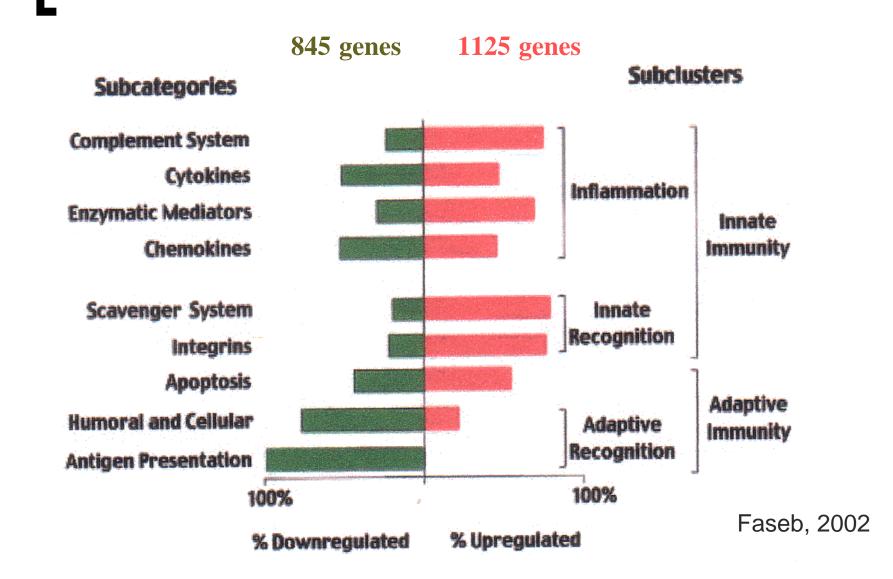
Background

- Systemic inflammation is the hallmark of sepsis or ARDS
- Corticosteroids modulate the immune response to sepsis through genomic and non-genomic effects
- Cytokines suppress cortisol production or access to tissues, inducing corticosteroids insufficiency in almost half of septic shock

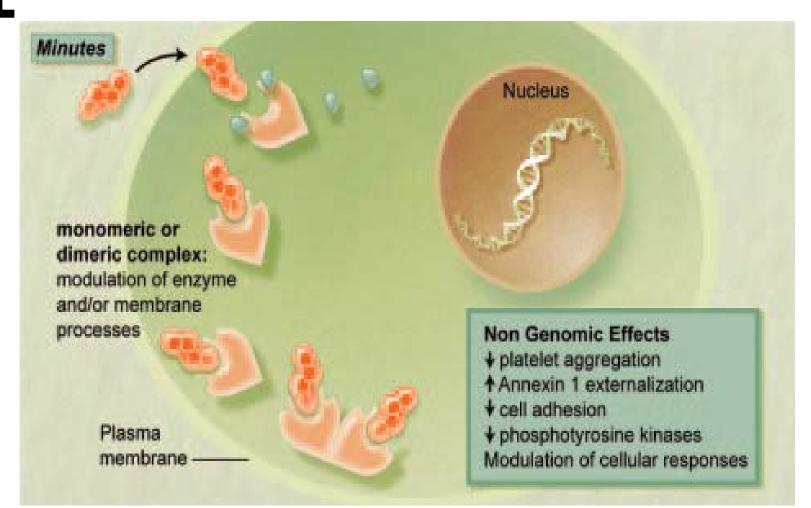

Regulation of Inflammation

Two TFs are central to the regulation of inflammation

Stimulatory Nuclear Factor-κB


> *Inhibitory* Glucocorticoid Receptor α

Found in all cells



Barnes and Karin. NEJM 1997; 336: 1066.

Reprogrammation rather than suppression!

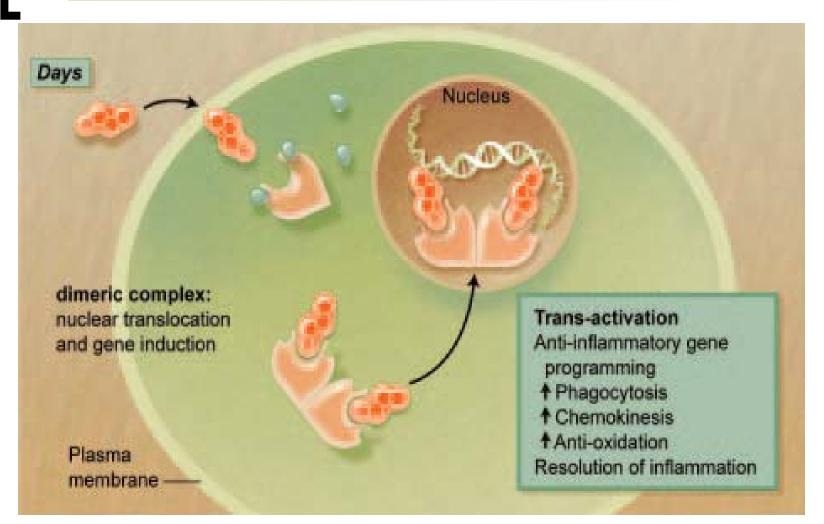
Within minutes!

Perreti, Blood 2007

Within hours!

Hours

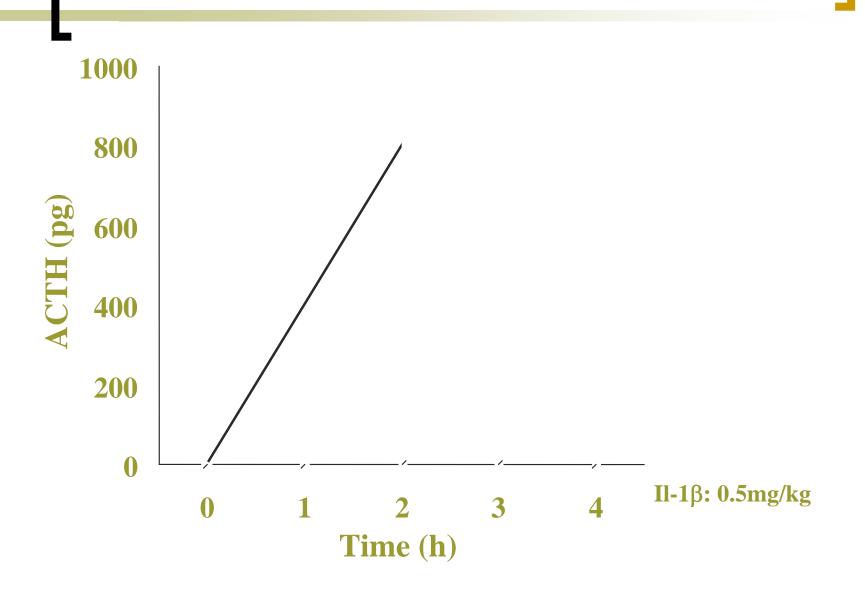
monomeric complex: trapping of transcription factor(s) within the cytosol -> no pro-inflammatory gene induction


> Plasma membrane —

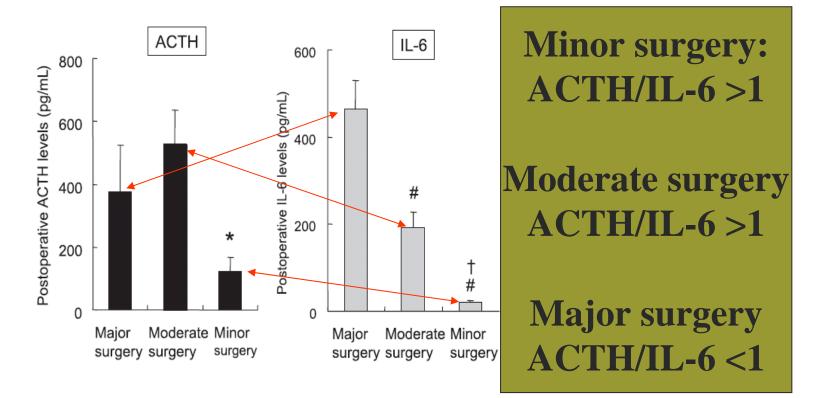
Trans-repression + transcription factor shuttling + cytokine synthesis + adhesion molecules/receptors Inhibition of cell trafficking

Nucleus

Perreti, Blood 2007


Within days

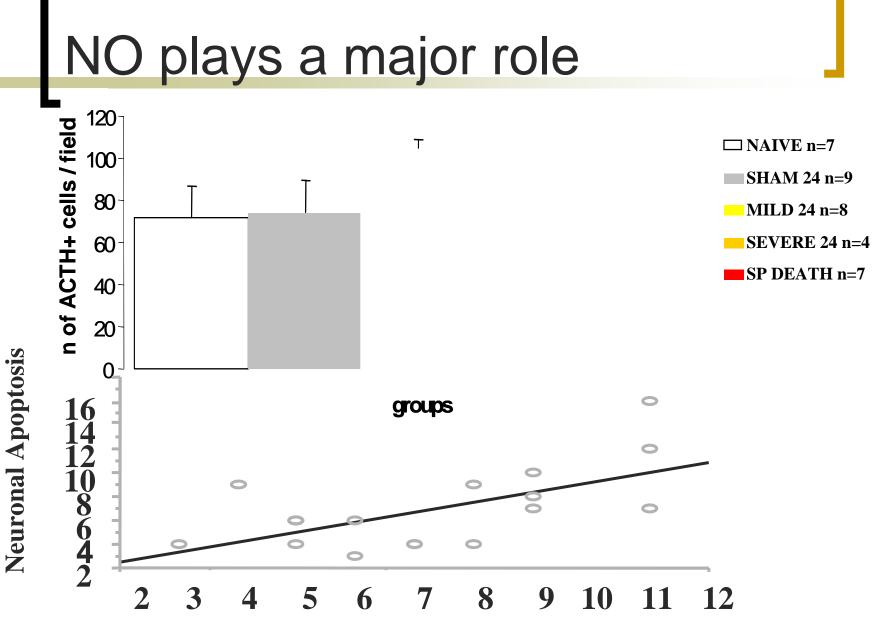
Perreti, Blood 2007


Evidence for an Inappropriate Activation of the HPA axis

Effects of sustained cytokines activation

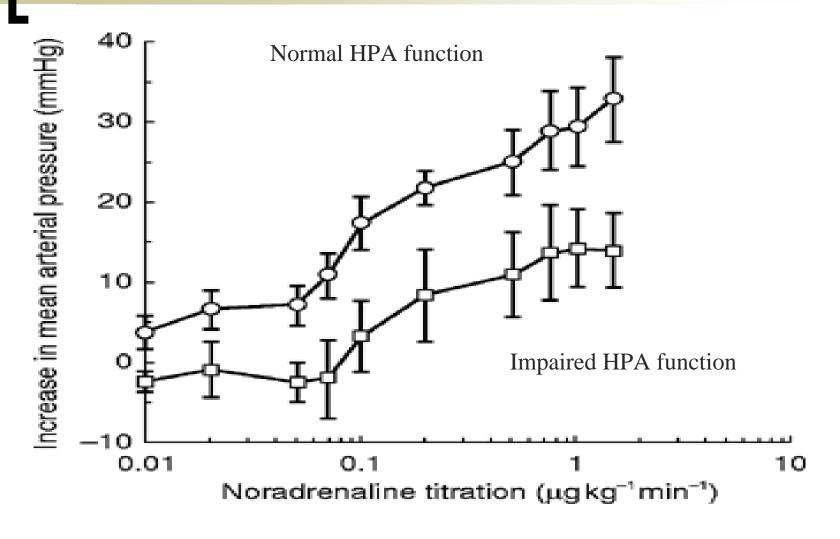
Surgical Trauma-Induced Adrenal Insufficiency is Associated with Postoperative Inflammatory Responses

Postoperative Inflammatory Responses and Adrenal Insufficiency

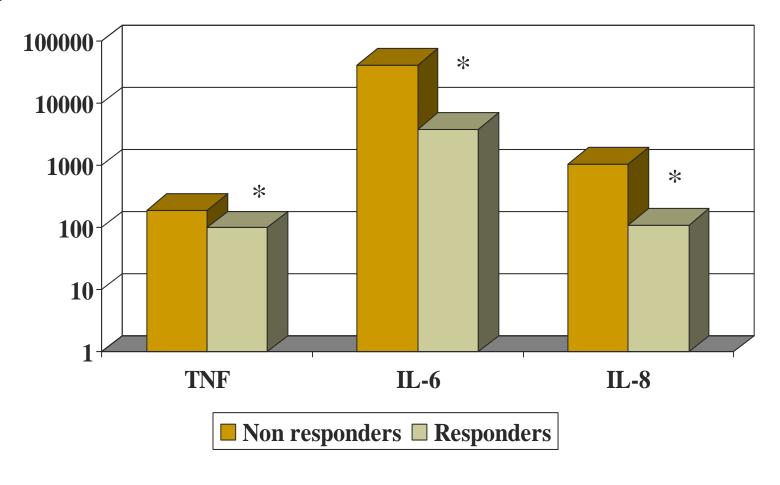

Kashiwabara et al, J Nippon Med Sch 2007

NO plays a major role

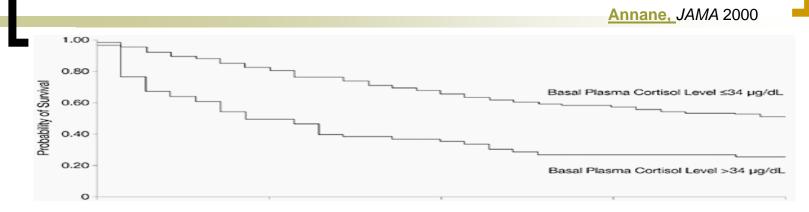
FIG. 4. Brightfield photomicrograph illustrating a representative sample of the effect of LPS (100 µg/kg, iv) on PVN citrulline-immunoreactive cells. Immunocytochemistry for citrulline was performed in vehicle and at varying intervals after LPS treatment. Magnification, ×160.


[Citrulline] (iNOS product)

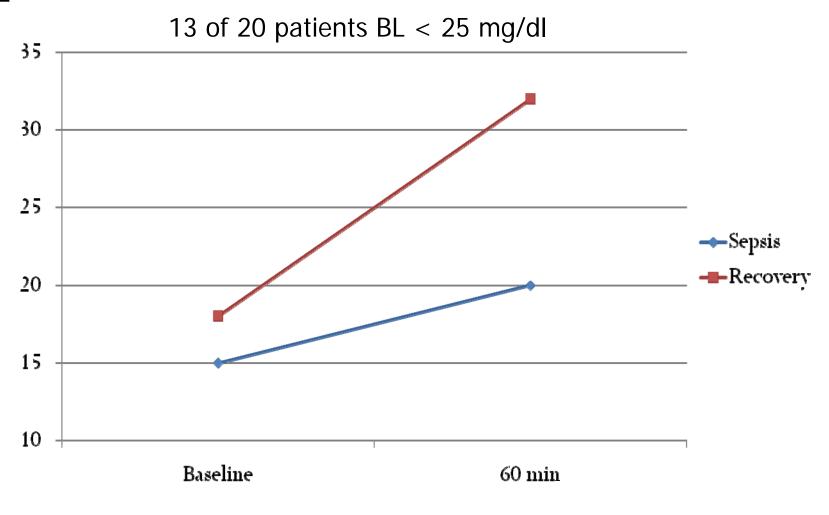
Li et al Cir Res 2003


Sonneville Brain Pathol 2010 & Sharshar Lancet 2003

Clinical consequences of the impaired HPA axis

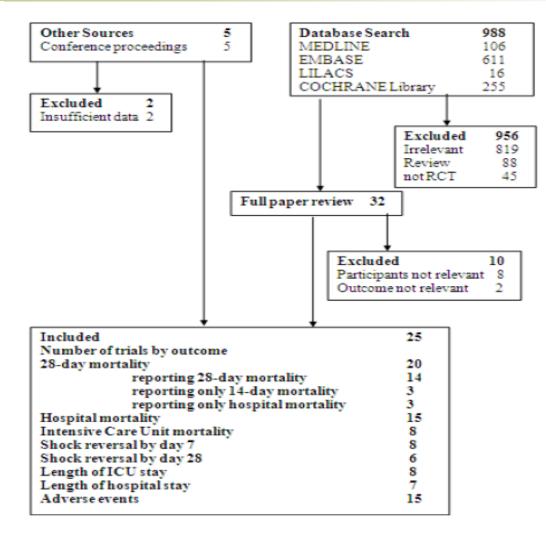

Annane, Br J Clin Pharmacol, 1998

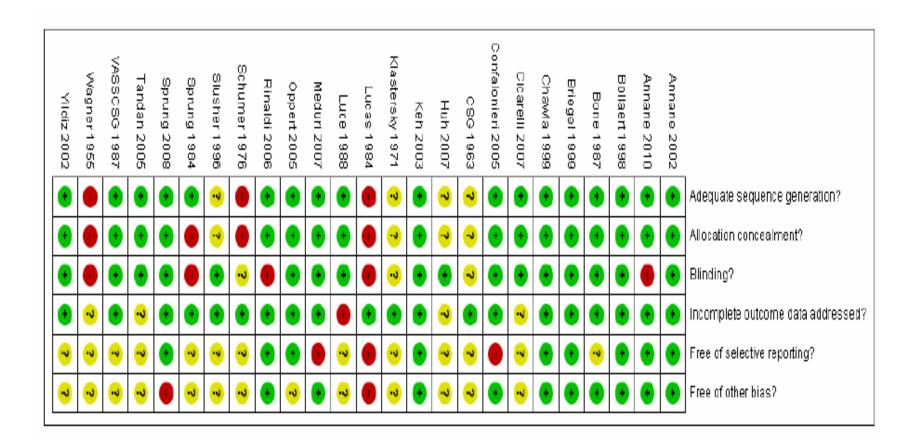
Clinical consequences of the impaired HPA axis



Annane, CCM 2006

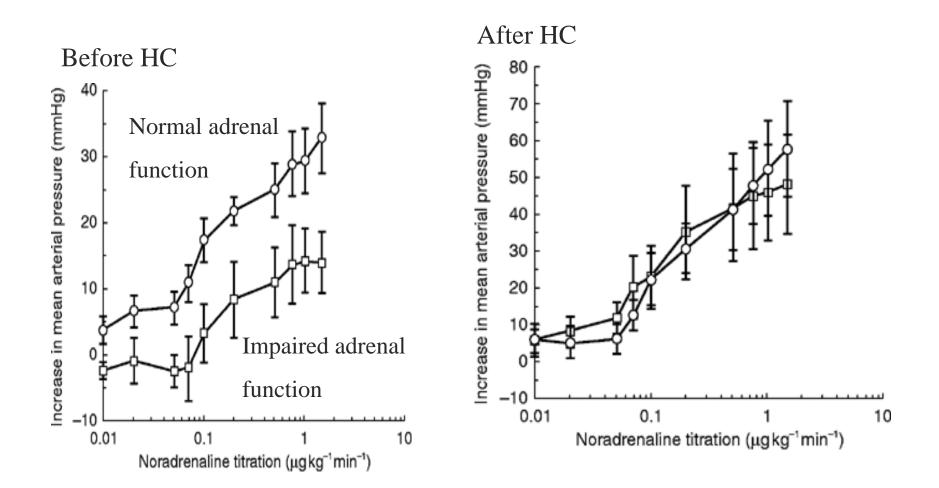
A 3-Level Prognostic Classification in Septic Shock Based on Cortisol Levels and Cortisol Response to Corticotropin


Survivors will recover a normal HPA axis!


Briegel, Intensive Care Med 1996;22:894

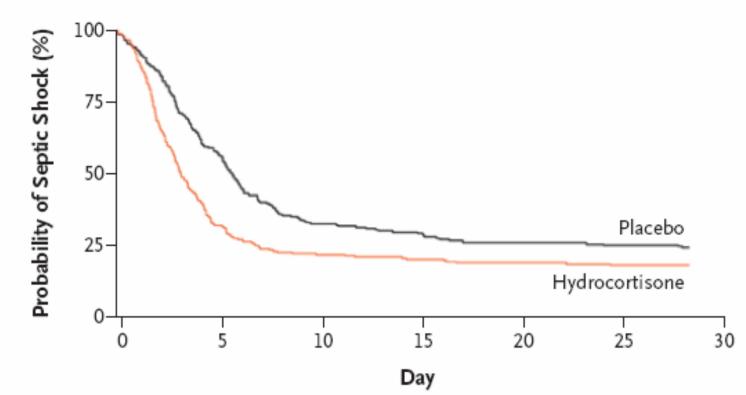
Critical Analysis of the Literature

Results of the literature search



Methodological Quality of Trials

Glucocorticoids Restore Cardiovascular Homeostasis

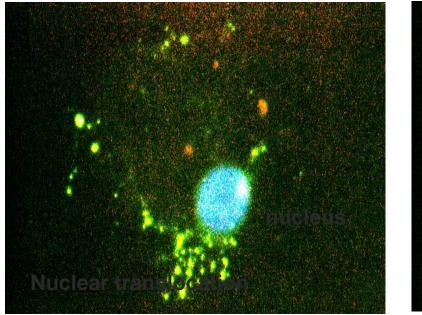

Hydrocortisone Restores the Responsiveness to Vasopressors

Annane, British Journal of Clinical Pharmacology, '

Hydrocortisone reduces the time on vasopressors

C All Patients

Sprung, NEJM 2008

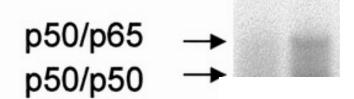

Hydrocortisone normalizes the cardiovascular function

	Treatm	Treatment		Control		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
1.8.1 Shock reversa	nl at day 7							
Sprung 1984	25	43	6	16	6.3%	1.55 [0.78, 3.06]	1984	
Bone 1987	85	130	83	114	20.2%	0.90 [0.76, 1.06]	1987	
Bollaert 1998	15	22	4	19	4.0%	3.24 [1.30, 8.10]	1998	
Chawla 1999	16	23	9	21	8.3%	1.62 [0.92, 2.85]	1999	+ -
Briegel 1999	17	20	12	20	12.1%	1.42 [0.95, 2.12]	1999	+
Annane 2002	60	151	40	149	14.4%	1.48 [1.06, 2.06]	2002	
Oppert 2005	14	18	16	23	13.2%	1.12 [0.78, 1.61]	2005	-
Sprung 2008	186	251	145	248	21.5%	1.27 [1.12, 1.44]	2008	
Subtotal (95% Cl)		658		610	100.0%	1.29 [1.06, 1.58]		◆
Total events	418		315					
Heterogeneity: Tau ²	= 0.04; Chi	i² = 21.	48, df = 7	(P = 0.	003); I ^z =	67%		
Test for overall effect	t: Z = 2.51 ((P = 0.0)	11)					

Glucocorticoids Restore Immune Homeostasis

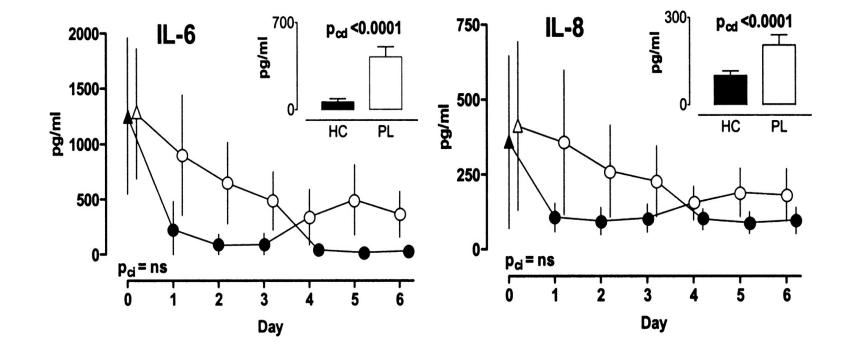
Corticosteroids inhibited NF-kB Activation

Before steroids

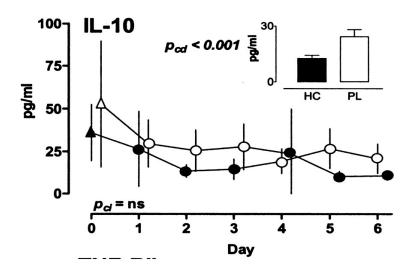

After 10 days of steroids

NF-κB staining with FITC-Ab

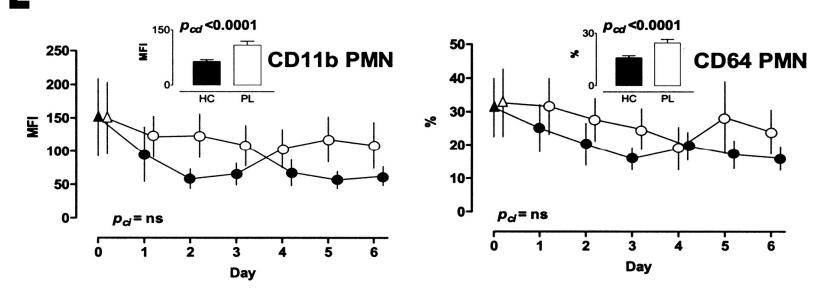
Corticosteroids inhibited NF-kB Activation

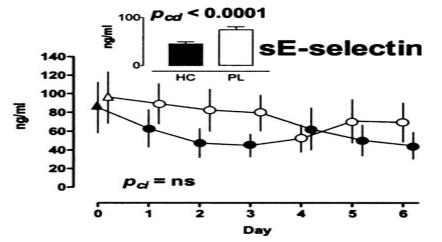

days post-treatment

HC - -ReLPS - +


Crit Care Med 2001; 29:1074

Corticosteroids decreased circulating levels of all pro-inflammatory cytokines


Didier Keh, AJRCCM 2003


Corticosteroids decreased circulating levels of most of anti-inflammatory cytokines

Didier Keh, AJRCCM 2003

Corticosteroids attenuated the endothelial activation

Keh, AJRCCM 2003

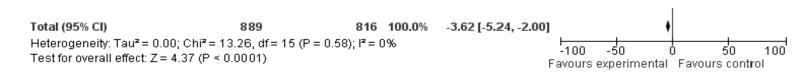
Glucocorticoids Restore Organs Function

Corticosteroids reduced the number and intensity of organ dysfunctions

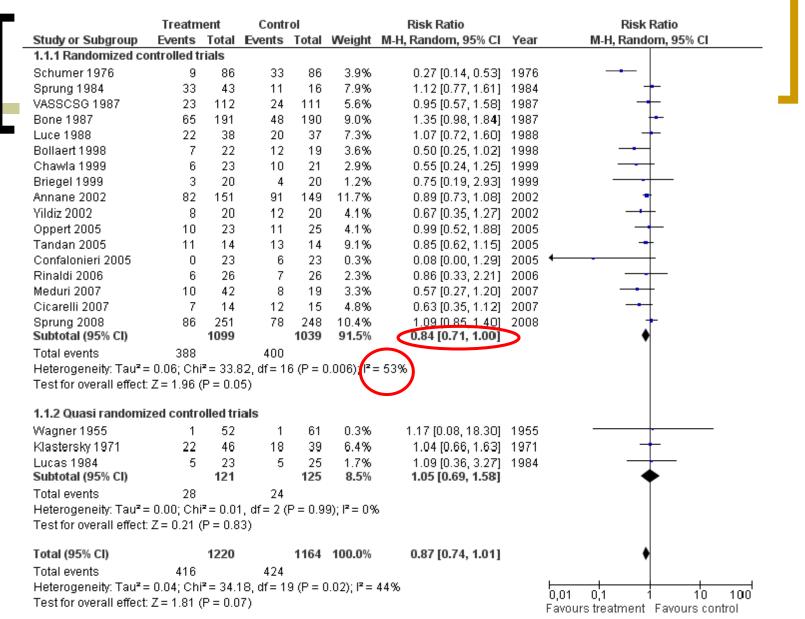
	HC (n=251)	Placebo (n=248)	Р
0	10.6 ± 3.4	10.6 ± 3.2	NS
1	$10.4\pm~3.7$	$10.7\pm~3.6$	NS
2	$10.2\pm~3.8$	$10.3\pm~3.7$	NS
3	8.7 ± 4.4	9.7 ± 4.0	0.01
4	7.8 ± 4.2	$9.9\pm~4.4$	0.03
5	$6.9\pm~4.4$	$8.4\pm~4.6$	0.006
6	$6.4\pm~4.3$	$7.7\pm\ 5.0$	0.004
7	6.1 ± 4.4	7.1 ± 4.8	0.03

Moreno, Intensive Care Medicine 2011

Corticosteroids reduced the number and intensity of organ dysfunctions


1.9 SOFA score at day-7

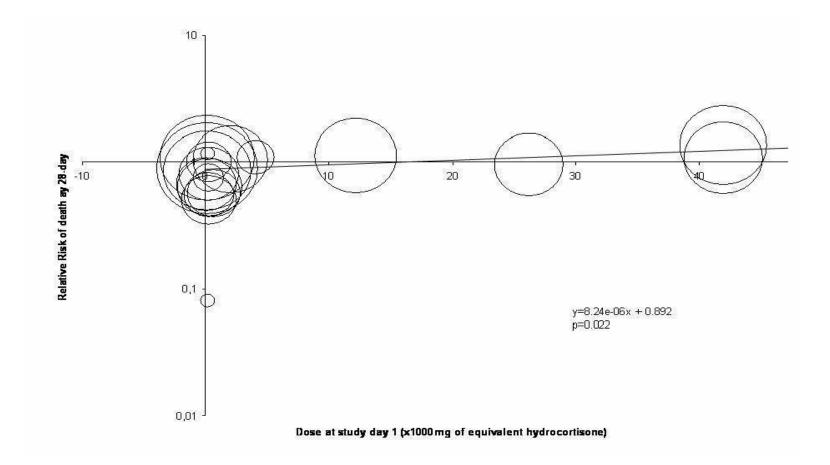
	Trea	atme	nt	Co	ontro	I		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	I IV, Random, 95% Cl
Annane 2002	7.5	3	151	9.5	4	149	43.7%	-2.00 [-2.80, -1.20]]
Cicarelli 2007	9	4	15	9	5	14	2.7%	0.00 [-3.31, 3.31]	1
Oppert 2005	6	4	23	8	4	25	5.8%	-2.00 [-4.27, 0.27]]
Rinaldi 2006	1	4	20	2	4	20	4.8%	-1.00 [-3.48, 1.48]]
Sprung 2008	6.1	4.4	251	7.1	4.8	248	43.0%	-1.00 [-1.81, -0.19]] -
Total (95% CI)			460			456	100.0%	-1.47 [-2.01, -0.92]	. ♦
Heterogeneity: Tau ² =	= 0.01; Cl	hi² = 4	4.09, df	= 4 (P =	= 0.39	3); l² = 2	2%		
Test for overall effect:	Z = 5.27	' (P <	0.0000	11)					Favours experimental Favours control


Corticosteroids reduced ICU length of stay

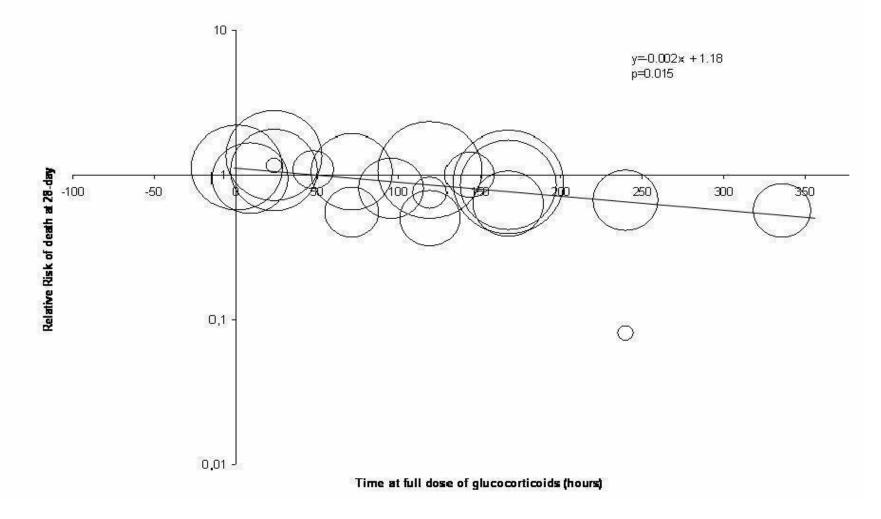
1.10 Length of ICU stay

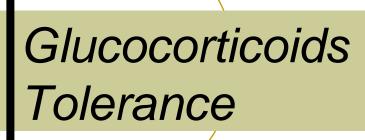
	Trea	atmer	nt	Co	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
1.10.1 For all patient	s								
Briegel 1999	29	16	20	38	24	20	1.6%	-9.00 [-21.64, 3.64]	+
Meduri 2007	7	14	42	14.5	21	19	2.5%	-7.50 [-17.85, 2.85]	+
Confalonieri 2005	7.2	7.1	23	14.2	9.8	23	10.8%	-7.00 [-11.95, -2.05]	
Annane 2002	22	24	151	25.5	18	149	11.5%	-3.50 [-8.30, 1.30]	
Chawla 1999	7.4	6.2	23	10.7	7.6	21	15.5%	-3.30 [-7.42, 0.82]	-
Rinaldi 2006	19	21	26	21	19	26	2.2%	-2.00 [-12.89, 8.89]	_ _ _
Sprung 2008	19	31	251	18	17	248	13.7%	1.00 [-3.38, 5.38]	+
Bollaert 1998	26	24	22	19	18	19	1.6%	7.00 [-5.89, 19.89]	<u>+</u>
Subtotal (95% CI)			558			525	59.4%	-3.11 [-5.79, -0.43]	•
Heterogeneity: Tau ² =	= 3.90; Cł	ni² = 9	.72, df=	= 7 (P = I	0.21);	l ² = 28°	%		
Test for overall effect	Z = 2.27	(P = 0	0.02)						

Glucocorticoids Save Life 1.1 28-day all-cause mortality



1.3 28-day all-cause mortality by subgroups based on treatment dose/duration


	Treatment		Control			Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
1.3.1 Long course of	low dose	cortic	osteroids	6				
Bollaert 1998	7	22	12	19	4.2%	0.50 [0.25, 1.02]	1998	
Chawla 1999	6	23	10	21	3.1%	0.55 [0.24, 1.25]	1999	_ +
Briegel 1999	3	20	4	20	1.2%	0.75 [0.19, 2.93]	1999	
Annane 2002	82	151	91	149	30.0%	0.89 [0.73, 1.08]	2002	
Yildiz 2002	8	20	12	20	4.9%	0.67 [0.35, 1.27]	2002	+
Confalonieri 2005	0	23	6	23	0.3%	0.08 [0.00, 1.29]	2005	← +
Tandan 2005	11	14	13	14	16.8%	0.85 [0.62, 1.15]	2005	-=+
Oppert 2005	10	23	11	25	5.0%	0.99 [0.52, 1.88]	2005	-+-
Rinaldi 2006	6	26	7	26	2.4%	0.86 [0.33, 2.21]	2006	
Meduri 2007	10	42	8	19	3.7%	0.57 [0.27, 1.20]	2007	
Cicarelli 2007	7	14	12	15	6.0%	0.63 [0.35, 1.12]	2007	
Sprung 2008	86	251	78	248	22.4%	1.89 [0.85, 1.49]	2008	.+
Subtotal (95% CI)		629		599	100.0%	0.84 [0.72, 0.97]	ノ	•
Total events	236		264					
Heterogeneity: Tau ² =	: 0.01; Chi	² = 12.0	39, df = 11	1 (P = 0).30 <mark>(</mark> ; I ² =	15%		
Test for overall effect:	Z = 2.31 (P = 0.0	12)					



Corticosteroids dose: the lower the better

Corticosteroids duration: the longer the better

Corticosteroids and risk of stress ulcer

1.12 Number of patients with adverse events

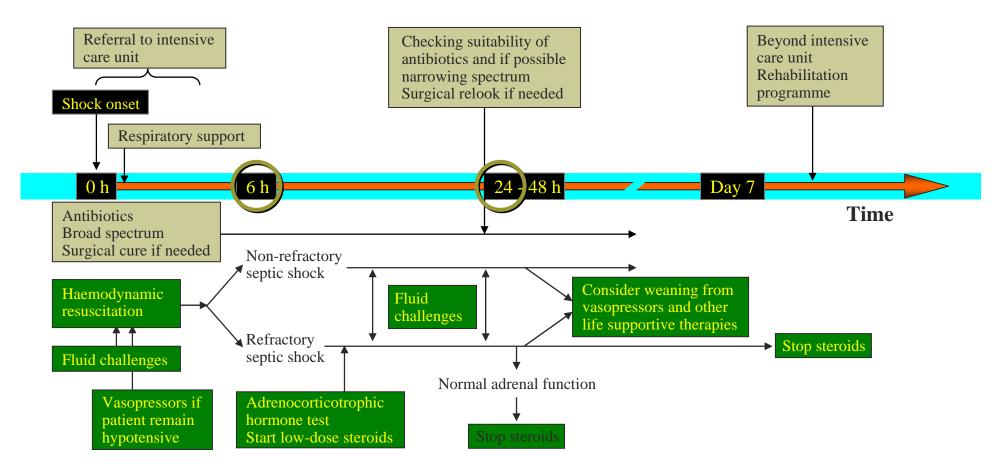
	Treatm	nent	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.12.1 Gastroduoder	nal bleedir	ng					
Annane 2002	11	151	8	149	12.8%	1.36 [0.56, 3.28]	_ + •
Bollaert 1998	1	22	3	19	2.1%	0.29 [0.03, 2.54]	
Briegel 1999	1	20	0	20	1.0%	3.00 [0.13, 69.52]	
Chawla 1999	1	23	2	21	1.8%	0.46 [0.04, 4.68]	
Cicarelli 2007	0	14	0	15		Not estimable	
Confalonieri 2005	1	23	1	23	1.4%	1.00 [0.07, 15.04]	
Luce 1988	18	37	16	36	41.1%	1.09 [0.67, 1.79]	+
Meduri 2007	0	42	0	19		Not estimable	
Schumer 1976	2	86	1	86	1.8%	2.00 [0.18, 21.65]	
Sprung 1984	1	43	2	16	1.8%	0.19 [0.02, 1.91]	
Sprung 2008	15	234	13	232	19.2%	1.14 [0.56, 2.35]	
VASSCSG 1987	14	112	10	111	16.9%	1.39 [0.64, 2.99]	
Yildiz 2002	0	20	0	20		Not estimable	L
Subtotal (95% CI)		827		767	100.0%	1.12 [0.81, 1.53]	•
Total events	65		56				
Heterogeneity: Tau ² =	= 0.00; Ch	i ^z = 5.49	5, df = 9 (l	P = 0.7	9); I ^z = 0%	6	
Test for overall effect	: Z = 0.68 ((P = 0.5	i0)				
							0,01 0,1 1 10

Annane JAMA 2009 & CDSR 2010

Favours treatment Favours control

Corticosteroids and risk of superinfection

	Treatm	nent	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
							· ·
1.12.2 Superinfections	6						
Annane 2002	15	151	18	149	9.4%	0.82 [0.43, 1.57]	
Bollaert 1998	7	22	9	19	6.8%	0.67 [0.31, 1.46]	
Bone 1987	29	152	30	147	17.2%	0.93 [0.59, 1.48]	
Briegel 1999	10	20	7	20	7.4%	1.43 [0.68, 3.00]	- +-
Chawla 1999	4	23	5	21	3.1%	0.73 [0.23, 2.36]	
Cicarelli 2007	0	14	1	15	0.4%	0.36 [0.02, 8.07]	
Confalonieri 2005	0	23	4	23	0.5%	0.11 [0.01, 1.95]	←
Klastersky 1971	11	46	6	39	5.1%	1.55 [0.63, 3.82]	- +-
Luce 1988	3	37	4	36	2.1%	0.73 [0.18, 3.03]	
Schumer 1976	0	86	0	86		Not estimable	
Sprung 1984	11	43	1	16	1.1%	4.09 [0.57, 29.20]	
Sprung 2008	78	234	61	232	35.0%	1.27 [0.96, 1.68]	-
VASSCSG 1987	16	112	23	111	11.4%	0.69 [0.39, 1.23]	+
Yildiz 2002	0	20	1	20	0.4%	0.33 [0.01, 7.72]	
Subtotal (95% CI)		983		934	100.0%	1.01 [0.82, 1.25]	•
Total events	184		170				
Heterogeneity: Tau ² = (0.01; Chi ²	= 13.00	2, df = 12	(P = 0)	.37); I² = 8	%	
Test for overall effect: Z	E = 0.10 (F	^o = 0.92)				
							0,01 0,1 1 10 100


Favours treatment Favours control

Corticosteroids and risk of metabolic complications

	Treatm	ient	Control			Risk Ratio	Risk Ratio	k Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	M-H, Random, 95% Cl		
1.12.3 Hyperglycaem	ia								
Annane 2002	130	150	111	149	45.0%	1.16 [1.04, 1.30]	•		
Bollaert 1998	3	22	3	19	0.3%	0.86 [0.20, 3.79]			
Luce 1988	16	37	15	36	2.0%	1.04 [0.61, 1.77]	+-		
Meduri 2007	22	42	6	19	1.1%	1.66 [0.81, 3.41]	+		
Schumer 1976	1	86	1	86	0.1%	1.00 [0.06, 15.73]			
Sprung 1984	4	43	0	16	0.1%	3.48 [0.20, 61.18]			
Sprung 2008	186	234	161	232	49.7%	1.15 [1.03, 1.28]	•		
VASSCSG 1987	23	111	17	112	1.8%	1.37 [0.77, 2.41]	+		
Yildiz 2002	0	20	0	20		Not estimable			
Subtotal (95% CI)		745		689	100.0%	1.16 [1.07, 1.25]	•		
Total events	385		314						
Heterogeneity: Tau ² =	0.00; Chi	² = 2.30), df = 7 (F	² = 0.94	4); I ² = 0%				
Test for overall effect:	Z = 3.83 (P = 0.0	001)						
1.12.4 Hypernatremia	1								
Annane 2002	54	150	34	149	45.9%	1.58 [1.10, 2.27]			
Briegel 1999	6	20	1	20	1.5%	6.00 [0.79, 45.42]		_	
Sprung 2008	67	234	42	232	52.6%	1.58 [1.13, 2.22]			
Subtotal (95% CI)		404		401	100.0%	1.61 [1.26, 2.06]	♦		
Total events	127		77						
Heterogeneity: Tau ² =	0.00; Chi	² = 1.68	i, df = 2 (F	^o = 0.44	4); I ² = 0%				
Test for overall effect:	Z= 3.79 (P = 0.0	002)						
							0,01 0,1 1 10	100	
							Coupling tractment. Follows cont		

Favours treatment Favours control

When I use Corticosteroids?

Surviving Sepsis Campaign

Guidelines for Management of Severe Sepsis/Septic Shock 2012 Tentative draft

Corticosteroids

- We suggest that a minimum of five day course of continuous infusion of intravenous hydrocortisone (200-300 mg daily and no higher) be used only in adult septic shock patients who require persistent high dose of vasopressors to keep adequate blood pressure despite adequate fluid resuscitation (Grade 2C).
- 2. We suggest not using the ACTH stimulation test to identify the subset of adults with septic shock who should receive hydrocortisone (Grade 2B).
- 3. We suggest that patients with septic shock receive hydrocortisone rather than other steroids (Grade 2B). Further we recommend that hydrocortisone alone be used instead of hydrocortisone plus fludrocortisone (Grade 1B).

Corticosteroids

- 4. We suggest that clinicians taper the patient from steroid therapy when vasopressors are no longer required (Grade 2D).
- We recommend that corticosteroids not be administered for of the purpose of treating severe sepsis in the absence of shock (Grade 1C).