Savoir analyser et utiliser

l'interaction cœur-poumon

Medical ICU Bicetre hospital University Paris South France

Hemodynamic effects

of Mechanical Insufflation

Use of heart-lung interaction

to assess fluid responsiveness

Effects of cyclic increase in intrathoracic pressure

Mechanical insufflation and RV ejection

Physiological aspects

Pulmonary vascular resistance and lung volume
 Clinical applications

extra-alveolar vessels<image> Image: Sector of the sector of

↗ Lung volume

improves the RV ejection

by **decreasing resistance** of **extra-alveolar vessels**

I Lung volume
improves the RV ejection
by decreasing resistance
of extra-alveolar vessels

7 Transpulmonary pressure

$$= \mathbf{P}_{alv} - \mathbf{P}_{it}$$

impedes the RV ejection
 by compressing the
 intra-alveolar vessels

Mechanical insufflation and RV ejection

- Physiological aspects
 - Pulmonary vascular resistance and lung volume
 - Pulmonary vascular resistance and West's zones

Hypovolemia favors zones 1 and 2 by reducing intravascular pressures

Mechanical insufflation and RV ejection

> Physiological aspects

> Clinical applications

Transpulmonary pressure and ACP

Acute cor pulmonale in acute respiratory distress syndrome submitted to protective ventilation: Incidence, clinical implications, and prognosis

Antoine Vieillard-Baron, MD; Jean-Marie Schmitt, MD; Roch Augarde, MD; J. L. Fellahi, MD; Sebastien Prin, MD Bernard Page, MD; Alain Beauchet, MD; François Jardin, MD

Crit Care Med 2001, 29:1551-1555

Intensive Care Med (2009) 35:69–76

David Osman Xavier Monnet Vincent Castelain Nadia Anguel Josiane Warszawski Jean-Louis Teboul Christian Richard

ORIGINAL

Incidence and prognostic value of right ventricular failure in acute respiratory distress syndrome

145 **ARDS** pts with **PAC**

with lung protective ventilation

Definition of acute cor pulmonale

- mean PAP > 25 mmHg
- RAP > PAOP
- Stroke Index < 30 mL/m²

Intensive Care Med (2009) 35:69–76

David Osman Xavier Monnet Vincent Castelain Nadia Anguel Josiane Warszawski Jean-Louis Teboul Christian Richard

ORIGINAL

Incidence and prognostic value of right ventricular failure in acute respiratory distress syndrome

Reduction of transpulmonary pressure using ventilatory strategies aimed at limiting plateau pressure, is associated with high reduction of incidence and severity of acute cor pulmonale during ARDS

Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock: 2012

R. Phillip Dellinger, MD¹; Mitchell M. Levy, MD²; Andrew Rhodes, MB BS³; Djillali Annane, MD⁴; Herwig Gerlach, MD, PhD⁵; Steven M. Opal, MD⁶; Jonathan E. Sevransky, MD⁷; Charles L. Sprung, MD⁸; Ivor S. Douglas, MD⁹; Roman Jaeschke, MD¹⁰; Tiffany M. Osborn, MD, MPH¹¹; Mark E. Nunnally, MD¹²; Sean R. Townsend, MD¹³; Konrad Reinhart, MD¹⁴; Ruth M. Kleinpell, PhD, RN-CS¹⁵; Derek C. Angus, MD, MPH¹⁶; Clifford S. Deutschman, MD, MS¹⁷; Flavia R. Machado, MD, PhD¹⁸; Gordon D. Rubenfeld, MD¹⁹; Steven A. Webb, MB BS, PhD²⁰; Richard J. Beale, MB BS²¹; Jean-Louis Vincent, MD, PhD²²; Rui Moreno, MD, PhD²³; and the Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup*

O. Mechanical Ventilation of Sepsis-Induced Acute Respiratory Distress Syndrome (ARDS)

- 1. Target a tidal volume of 6 mL/kg predicted body weight in patients with sepsis-induced ARDS (grade 1A vs. 12 mL/kg).
- Plateau pressures be measured in patients with ARDS and initial upper limit goal for plateau pressures in a passively inflated lung be ≤30 cm H₂O (grade 1B).

Mechanical insufflation and RV ejection

> Physiological aspects

> Clinical applications

✓ Transpulmonary pressure and ACP

✓ Influence of volume status

Emilie Fougères, MD; Jean-Louis Teboul, MD, PhD; Christian Richard, MD; David Osman, MD; Denis Chemla, MD, PhD; Xavier Monnet, MD, PhD

Emilie Fougères, MD; Jean-Louis Teboul, MD, PhD; Christian Richard, MD; David Osman, MD; Denis Chemla, MD, PhD; Xavier Monnet, MD, PhD

Emilie Fougères, MD; Jean-Louis Teboul, MD, PhD; Christian Richard, MD; David Osman, MD; Denis Chemla, MD, PhD; Xavier Monnet, MD, PhD

Emilie Fougères, MD; Jean-Louis Teboul, MD, PhD; Christian Richard, MD; David Osman, MD; Denis Chemla, MD, PhD; Xavier Monnet, MD, PhD

- Decrease in RV preload
- Increase in RV afterload

Emilie Fougères, MD; Jean-Louis Teboul, MD, PhD; Christian Richard, MD; David Osman, MD; Denis Chemla, MD, PhD; Xavier Monnet, MD, PhD

Emilie Fougères, MD; Jean-Louis Teboul, MD, PhD; Christian Richard, MD; David Osman, MD; Denis Chemla, MD, PhD; Xavier Monnet, MD, PhD

Emilie Fougères, MD; Jean-Louis Teboul, MD, PhD; Christian Richard, MD; David Osman, MD; Denis Chemla, MD, PhD; Xavier Monnet, MD, PhD

Volume loading may favor zones 3

Mechanical insufflation and RV ejection

Mechanical insufflation and LV filling

Mechanical insufflation and RV ejection

Mechanical insufflation and LV filling

Mechanical insufflation and LV ejection

Left ventricular function during weaning of patients with chronic obstructive pulmonary disease

Ch. Richard¹, J.-L. Teboul¹, F. Archambaud², J.-L. Hebert³, P. Michaut¹, P. Auzepy¹

Intensive Care Med (1994) 20:181-186

Hemodynamic effects

of Mechanical Insufflation

Use of heart-lung interaction

to assess fluid responsiveness

Fluid resuscitation in septic shock: A positive fluid balance and elevated central venous pressure are associated with increased mortality*

John H. Boyd, MD, FRCP(C); Jason Forbes, MD; Taka-aki Nakada, MD, PhD; Keith R. Walley, MD, FRCP(C); James A. Russell, MD, FRCP(C)

Crit Care Med 2011; 39:259–265

Decision of starting fluid administration

- presence of hemodynamic instability/peripheral hypoperfusion (mottled skin, hypotension, oliguria, hyperlactatemia...)
- and presence of **preload responsiveness**
- and limited risks of fluid overload

Predictors of preload responsiveness/unresponsiveness

Can help to choose the **best** fluid **strategy** by **avoiding** to fluid **overload** patients who would be fluid **unresponsive** Fluid infusion will increase LV stroke volume only if both ventricles are preload responsive

equivalent to

biventricular preload responsiveness

Ventricular preload

Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge*

David Osman, MD; Christophe Ridel, MD; Patrick Ray, MD; Xavier Monnet, MD, PhD; Nadia Anguel, MD; Christian Richard, MD; Jean-Louis Teboul, MD, PhD

Crit Care Med 2007; 35:64–68

Does the Central Venous Pressure Predict Fluid Responsiveness? An Updated Meta-Analysis and a Plea for Some Common Sense*

Paul E. Marik, MD, FCCM¹; Rodrigo Cavallazzi, MD²

Crit Care Med 2013; 41:1774-81

Maurizio Cecconi Daniel De Backer Massimo Antonelli Richard Beale Jan Bakker Christoph Hofer Roman Jaeschke Alexandre Mebazaa Michael R. Pinsky Jean Louis Teboul Jean Louis Vincent Andrew Rhodes **Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine**

30. We recommend not to target any absolute value of ventricular filling pressure or volume

Level 1; QoE moderate (B)

31. We recommend using dynamic over static variables to predict fluid responsiveness, when applicable

Level 1; QoE moderate (B)

MV induces cyclic changes in SV only in pts with biventricular preload responsiveness fluid responsiveness occurs only in pts with biventricular preload responsiveness

correlates with the magnitude

of the

induced by

Pulse Pressure Variation

the respiratory changes in arterial pulse pressure

should **reflect** the respiratory changes in **LV stroke volume**

Pulse pressure variation should predict fluid responsiveness

Clinical Use of Respiratory Changes in Arterial Pulse Pressure to Monitor the Hemodynamic Effects of PEEP

FRÉDÉRIC MICHARD, DENIS CHEMLA, CHRISTIAN RICHARD, MARC WYSOCKI, MICHAEL R. PINSKY, YVES LECARPENTIER, and JEAN-LOUIS TEBOUL

AM J RESPIR CRIT CARE MED 1999;159:935-939

Relation between Respiratory Changes in Arterial Pulse Pressure and Fluid Responsiveness in Septic Patients with Acute Circulatory Failure

FRÉDÉRIC MICHARD, SANDRINE BOUSSAT, DENIS CHEMLA, NADIA ANGUEL, ALAIN MERCAT, YVES LECARPENTIER, CHRISTIAN RICHARD, MICHAEL R. PINSKY, and JEAN-LOUIS TEBOUL

Am J Respir Crit Care Med 2000; 162:134-8

Relation between Respiratory Changes in Arterial Pulse Pressure and Fluid Responsiveness in Septic Patients with Acute Circulatory Failure

FRÉDÉRIC MICHARD, SANDRINE BOUSSAT, DENIS CHEMLA, NADIA ANGUEL, ALAIN MERCAT, YVES LECARPENTIER, CHRISTIAN RICHARD, MICHAEL R. PINSKY, and JEAN-LOUIS TEBOUL

Am J Respir Crit Care Med 2000,162:134–138

Relation between Respiratory Changes in Arterial Pulse Pressure and Fluid Responsiveness in Septic Patients with Acute Circulatory Failure

FRÉDÉRIC MICHARD, SANDRINE BOUSSAT, DENIS CHEMLA, NADIA ANGUEL, ALAIN MERCAT, YVES LECARPENTIER, CHRISTIAN RICHARD, MICHAEL R. PINSKY, and JEAN-LOUIS TEBOUL

Am J Respir Crit Care Med 2000,162:134-138

Does pulse pressure variation predict fluid responsiveness in critically ill patients? A systematic review and meta-analysis

Xiaobo Yang and Bin Du^{*}

Critical Care 2014, **18**:650

Order	Authors	Year	Sample size	Setting	Admission	Diagnosis
1	Michard and colleagues [23]	2000	40	ICU	Medical	Sepsis/septic shock
2	Kramer and colleagues [24]	2004	21	SICU	Surgical	Cardiac surgery
3	Feissel and colleagues [25]	2005	20 ^a	ICU	Medical	Sepsis/septic shock
4	Charron and colleagues [26]	2006	21	ICU	NA	NA
5	Monnet and colleagues [27]	2006	30	MICU	Medical	Shock
6	Feissel and colleagues [28]	2007	23 ^b	MICU	Medical	Sepsis/septic shock
7	Wyffels and colleagues [29]	2007	32	ICU	Surgical	Cardiac surgery
8	Auler and colleagues [30]	2008	59	SICU	Surgical	Cardiac surgery
9	Monge Garcia and colleagues [31]	2009	38	ICU	NA	Shock
10	Vistisen and colleagues [32]	2009	23	SICU	Surgical	Cardiac surgery
11	Loupec and colleagues [33]	2011	40	SICU	Surgical and medical	Surgery and septic shock
12	Biais and colleagues [34]	2012	35	SICU	Surgical and medical	Vascular surgery, trauma, septic shock
13	Cecconi and colleagues [35]	2012	31	ICU	Surgical	High-risk surgery
14	Fellahi and colleagues [36]	2012	25	SICU	Surgical	Cardiac surgery
15	Khwannimit and colleagues [37]	2012	42	MICU	Medical	Sepsis/septic shock
16	Monnet and colleagues [38]	2012	26	MICU	Medical	Shock
17	Monnet and colleagues [39]	2012	39	MICU	Medical	Shock
18	Yazigi and colleagues [40]	2012	60	SICU	Surgical	Cardiac surgery
19	Fischer and colleagues [41]	2013	37	SICU	Surgical	Cardiac surgery
20	Fischer and colleagues [42]	2013	80	SICU	Surgical	Cardiac surgery
21	Ishihara and colleagues [43]	2013	43	ICU	Surgical	Noncardiac surgery
22	Monnet and colleagues [44]	2013	35	MICU	Medical	Shock

MICU, medical intensive care unit; NA, not available; SICU, surgical intensive care unit. ^aTwenty-two fluid challenges included. ^bTwenty-eight fluid challenges included.

Does pulse pressure variation predict fluid responsiveness in critically ill patients? A systematic review and meta-analysis

Xiaobo Yang and Bin Du^{*}

Critical Care 2014, 18:650

The **larger** the **PPV** *before* fluid infusion, the **larger** the **increase** in **CO** *after* fluid infusion

The **smaller** the **PPV** *before* fluid infusion, the **smaller** the **increase** in **CO** *after* fluid infusion **Pulse Pressure Variation**

Calculated automatically and displayed in real-time by functional hemodynamic monitors

Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: A systematic review of the literature*

Paul E. Marik. MD. FCCM: Rodrigo Cavallazzi. MD: Taiender Vasu. MD: Amvn Hirani. MD

Crit Care Med 2009; 37:2642-2647

AUC

PPV SPV **SVV** LVEDAI GEDVI CVP

0.94 (0.93-0.95) 0.86 (0.82-0.90) 0.84 (0.78-0.88) 0.64 (0.53-0.74) 0.56 (0.37-0.67)0.55 (0.48-0.62)

Prediction of fluid responsiveness by a continuous noninvasive assessment of arterial pressure in critically ill patients: comparison with four other dynamic indices

X. Monnet^{1,2*}, M. Dres^{1,2}, A. Ferré^{1,2}, G. Le Teuff⁴, M. Jozwiak^{1,2}, A. Bleibtreu^{1,2}, M.-C. Le Deley⁴, D. Chemla^{1,3}, C. Richard^{1,2} and J.-L. Teboul^{1,2}

British Journal of Anaesthesia 109 (3): 330-8 (2012)

Non-invasive finger blood pressure monitoring device

Intensive Care Med (2012) 38:1429–1437	REVIEW
Claudio Sandroni Fabio Cavallaro Cristina Marano Chiara Falcone Paolo De Santis Massimo Antonelli	Accuracy of plethysmographic indices as predictors of fluid responsiveness in mechanically ventilated adults: a systematic review and meta-analysis

References (first author)	Index	Number of patients/boluses	% Responders	Best threshold	AUC (SE)	Sensitivity	Specificity
Natalini		22/31	61.0	15.0	0.70 (0.094)	0.63	0.83
Solus Biguanat		22/31 8/5 <i>1</i>	42.0	0.5	0.70(0.074) 0.68(0.071)	0.64	0.65
Solus-Biguenet		0/54	42.0	9.5	0.00(0.071)	0.04	0.00
Camesson		23/23	64.0	15.0	0.03 (0.081)	0.93	0.90
Feissel	ΔΡΟΡ	23/28	64.0	14.0	0.94(0.050)	0.94	0.80
Wyffels	ΔΡΟΡ	32/32	62.5	11.8	0.89(0.061)	0.90	0.83
Hoiseth	ΔPOP	25/34	64.7	11.4	0.72 (0.082)	0.86	0.67
Cannesson	$\Delta \text{POP}^{\text{b}}$	25/25	64.0	12.0	0.94 (0.043)	0.87	0.89
	PVI	25/25	64.0	14.0	0.93 (0.051)	0.81	1.00
Zimmermann	PVI	20/20	75.0	9.5	0.97 (0.033)	0.93	1.00
Desgranges	PVI	28/28	68.0	12.0	0.84 (0.077)	0.74	0.67
Hood	PVI	25/25	88.0	10.0	0.96 (0.031)	0.86	1.00
(large bolus)							
Hood (small bolus)	PVI	25/63	36.5	10.0	0.71 (0.071)	0.65	0.67
Overall ^a		233/365	62.3 ± 14.0	9.5–15.0	0.85	0.80	0.76
					[0.79-0.92]	[0.74–0.85]	[0.68–0.82]

BJA

Pleth variability index is a weak predictor of fluid responsiveness in patients receiving norepinephrine

X. Monnet^{1,2*}, L. Guérin^{1,2}, M. Jozwiak^{1,2}, A. Bataille^{1,2}, F. Julien^{1,2}, C. Richard^{1,2} and J.-L. Teboul^{1,2}

The effects of goal-directed fluid therapy based on dynamic parameters on post-surgical outcome: a meta-analysis of randomized controlled trials

Jan Benes^{1*}, Mariateresa Giglio², Nicola Brienza² and Frederic Michard³

Critical Care 2014, **18**:584

Study	Type of surgery	Risk	Number of participants [*]	Timing	GDFTdyn end point	Other optimization goals	Type of intervention	Mortality reported	Morbidity reported
Benes, 2010 [38] Europe	Major abdominal	High	120 (60/60)	Intra	SW <10%	Cl >2.5 l/min/m ² , MAP >65 mmHg, CVP <15 mmHg,	Fluids, inotropes	Υ	CV, GI, infectious, renal, respiratory
Buettner, 2008 [11] Europe	Major abdominal	Moderate	80 (40/40)	Intra	SPV <10%	N/A	Fluids	Υ	-
Forget, 2010 [37] Europe	Abdominal	Moderate	82 (41/41)	Intra	PVI <10%	MAP >65 mmHg	Fluids	Υ	CV, GI, infectious, renal
Goepfert, 2013 [36] Europe	Elective cardiac	High	100 (50/50)	Intra, post	SW <10%	Cl >2.0 l/min/m ² , MAP >65 mmHg, HR 50-100 bpm, EVLWI ≤12 ml/kg	Fluids, inotropes	Ν	CV, infectious, respiratory, renal
Harten, 2008 [35] Europe	Emergency abdominal	High	29 (15/14)	Intra	PPV <10%	N/A	Fluids	Υ	CV, GI, infectious, renal, respiratory
Kapoor, 2008 [39] India	Cardiac	High	27 (14/13)	Intra, post	SW <10%	Cl >2.5 mL/min/m ² , CVP >6 mmHg, ScvO ₂ > 70%, SVI >30 ml/m ² , SVRI >1,500 dynes.s/cm ⁵ /m ² , DO ₂ l >450 ml/min/m ²	Fluids, inotropes	Y	GI, CV, renal, respiratory
Lopes, 2007 [10] Brazil	Major abdominal	High	33 (16/17)	Intra	PPV <10%	N/A	Fluids	Y	CV, GI, infectious, renal, respiratory
Mayer, 2010 [40] Europe	Major abdominal	High	60 (30/30)	Intra	SW <12%	Cl >2.5 mL/min/m ² , MAP >65 mmHg, SVl >35 ml/m ²	Fluids, inotropes	Y	Renal, respiratory
Ramsingh, 2013 [34] USA	Major abdominal	High	38 (20/18)	Intra	SW <13%	N/A	Fluids	Ν	-
Salzwedel, 2013 [30] Europe	Elective abdominal	Moderate	160 (81/79)	Intra	PPV <10%	CI >2.5 mL/min/m ² , MAP >65 mmHg	Fluids, inotropes	Ν	CV, GI, infectious, renal, respiratory
Sheeren, 2013 [33] Europe	Major abdominal	High	52 (26/26)	Intra	SW <10%	SV increase >10%	Fluids	Υ	CV, GI, infectious, renal, respiratory
Zhang Ju, 2012 [32] China	Major abdominal	Low	60 (20/40)	Intra	PPV <11%	N/A	Fluids	Ν	CV, GI, infectious, renal, respiratory
Zhang Ji, 2013 [31] China	Thoracic	Moderate	60 (30/30)	Intra	SW <9%	Cl >2.5 mL/min/m ² , MAP >65 mmHg	Fluids, inotropes	Ν	Gl, infectious, renal, Respiratory
Zheng, 2013 [29] China	Elective abdominal	Moderate	60 (30/30)	Intra, post	SW <12%	Cl >2.5 mL/min/m ² , MAP >65 mmHg, SVl >35 ml/m ²	Fluids, inotropes	Ν	CV, GI

The effects of goal-directed fluid therapy based on dynamic parameters on post-surgical outcome: a meta-analysis of randomized controlled trials

Jan Benes^{1*}, Mariateresa Giglio², Nicola Brienza² and Frederic Michard³

Critical Care 2014, **18**:584

post-surgical morbidity

	Experimental		Control		Odds Ratio		Odds Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl			
Benes 2010 (30)	18	60	35	60	16.0%	0.31 [0.14, 0.65]				
Forget 2010 (29)	23	41	25	41	13.2%	0.82 [0.34, 1.97]				
Goepfert 2013 (28)	34	50	42	50	11.7%	0.40 [0.15, 1.06]				
Harten 2008 (27)	7	14	4	15	5.6%	2.75 [0.58, 12.98]				
Kapoor 2008 (31)	1	13	2	14	2.3%	0.50 [0.04, 6.28]				
Lopes 2007 (10)	7	17	12	16	6.0%	0.23 [0.05, 1.03]				
Mayer 2010 (32)	6	30	15	30	9.1%	0.25 [0.08, 0.79]				
Salzwedel 2013 (22)	21	79	36	81	18.3%	0.45 [0.23, 0.88]				
Scheeren 2013 (25)	12	26	16	26	9.6%	0.54 [0.18, 1.62]				
Zhang Ju 2012 (24)	12	40	5	20	8.3%	1.29 [0.38, 4.34]				
Total (95% CI)		370		353	100.0%	0.51 [0.34, 0.75]	•			
Total events	141		192							
Heterogeneity: Tau ² = 0.11; Chi ² = 12.47, df = 9 (P = 0.19); $I^2 = 28\%$										
Test for overall effect: Z = 3.35 (P = 0.0008)										

The effects of goal-directed fluid therapy based on dynamic parameters on post-surgical outcome: a meta-analysis of randomized controlled trials

Jan Benes^{1*}, Mariateresa Giglio², Nicola Brienza² and Frederic Michard³

Critical Care 2014, **18**:584

Study or SubgroupMeanSDTotalMeanSDTotalWeightIV, Random, 95% CIIV, Random, 95% CIBenes 2010 (30) 3.7 3.3 60 3.8 4.4 60 12.0% -0.10 [-1.49 , 1.29]Buettner 2008 (11) 1.8 1.5 40 2.8 5.1 40 9.7% -1.00 [-2.65 , 0.65]Forget 2010 (29) 1.8 5.7 41 1.8 7.2 41 4.2% 0.00 [-2.81 , 2.81]Goepfert 2013 (28) 1.75 0.8 50 2.6 2.4 50 21.6% -0.85 [-1.55 , -0.15]Kapoor 2008 (31) 2.6 0.9 1.3 4.9 1.8 14 16.0% -2.30 [-3.36 , -1.24]Mayer 2010 (32) 1.7 1.6 30 1.7 1.8 30 19.0% 0.00 [-0.86 , 0.86]Scheeren 2013 (25) 1.3 1.2 26 18 2.2 26 17.4% -0.50 [-1.46 , 0.46]Heterogeneity: Tau ² = 0 34 : Chi ² = 12 62 $df = 6$ ($P = 0$ 0.5): $I2 = 52\%$ $IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$		Expe	rimen	ital	Co	ontro	Mean Differe			Mean Difference		
Benes 2010 (30) 3.7 3.3 60 3.8 4.4 60 12.0% -0.10 $[-1.49, 1.29]$ Buettner 2008 (11) 1.8 1.5 40 2.8 5.1 40 9.7% -1.00 $[-2.65, 0.65]$ Forget 2010 (29) 1.8 5.7 41 1.8 7.2 41 4.2% 0.00 $[-2.81, 2.81]$ Goepfert 2013 (28) 1.75 0.8 50 2.6 2.4 50 21.6% -0.85 $[-1.55, -0.15]$ Kapoor 2008 (31) 2.6 0.9 13 4.9 1.8 14 16.0% -2.30 $[-3.36, -1.24]$ Mayer 2010 (32) 1.7 1.6 30 1.7 1.8 30 19.0% 0.00 $[-0.86, 0.86]$ Scheeren 2013 (25) 1.3 1.2 26 17.4% -0.50 $[-1.46, 0.46]$ -1.46 Heterogeneity: Tau ² = 0 34: Chi ² = 12 62 df = 6 (P = 0 05): $l2 = 52\%$ $l2 = 5$	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI		
Buettner 2008 (11) 1.8 1.5 40 2.8 5.1 40 9.7% -1.00 [-2.65 , 0.65] Forget 2010 (29) 1.8 5.7 41 1.8 7.2 41 4.2% 0.00 [-2.81 , 2.81] Goepfert 2013 (28) 1.75 0.8 50 2.6 2.4 50 21.6% -0.85 [-1.55 , -0.15] Kapoor 2008 (31) 2.6 0.9 13 4.9 1.8 14 16.0% -2.30 [-3.36 , -1.24] Mayer 2010 (32) 1.7 1.6 30 1.7 1.8 30 19.0% 0.00 [-0.86 , 0.86] Scheeren 2013 (25) 1.3 1.2 26 17.4% -0.50 [-1.46 , 0.46] Heterogeneity: Tau ² = 0.34: Chi ² = 12.62 df = 6 (P = 0.05): 1 ² = 52\% -0.75 [-1.37 , -0.12]	Benes 2010 (30)	3.7	3.3	60	3.8	4.4	60	12.0%	-0.10 [-1.49, 1.29]			
Forget 2010 (29) 1.8 5.7 41 1.8 7.2 41 4.2% 0.00 [-2.81, 2.81] Goepfert 2013 (28) 1.75 0.8 50 2.6 2.4 50 21.6% -0.85 [-1.55, -0.15] Kapoor 2008 (31) 2.6 0.9 13 4.9 1.8 14 16.0% -2.30 [-3.36, -1.24] Mayer 2010 (32) 1.7 1.6 30 1.7 1.8 30 19.0% 0.00 [-0.86, 0.86] Scheeren 2013 (25) 1.3 1.2 26 1.8 2.2 26 17.4% -0.50 [-1.46, 0.46] Heterogeneity: Tau ² = 0 34: Chi ² = 12 62 df = 6 (P = 0 0.5): l ² = 52%	Buettner 2008 (11)	1.8	1.5	40	2.8	5.1	40	9.7%	-1.00 [-2.65, 0.65]	+		
Goepfert 2013 (28) 1.75 0.8 50 2.6 2.4 50 21.6% -0.85 $[-1.55, -0.15]$ Kapoor 2008 (31) 2.6 0.9 13 4.9 1.8 14 16.0% -2.30 $[-3.36, -1.24]$ Mayer 2010 (32) 1.7 1.6 30 1.7 1.8 30 19.0% 0.00 $[-0.86, 0.86]$ Scheeren 2013 (25) 1.3 1.2 26 1.8 2.2 26 17.4% -0.50 $[-1.46, 0.46]$ Total (95% Cl) 260 261 100.0% -0.75 $[-1.37, -0.12]$ \bullet Heterogeneity: Tau ² = 0 34 : $Chi2 = 12$ 62 $df = 6$ $P = 0$ 05 : $l2 = 52\%$ $l2 = 52\%$ $l2 = 52\%$	Forget 2010 (29)	1.8	5.7	41	1.8	7.2	41	4.2%	0.00 [-2.81, 2.81]			
Kapoor 2008 (31) 2.6 0.9 13 4.9 1.8 14 16.0% -2.30 [-3.36 , -1.24] Mayer 2010 (32) 1.7 1.6 30 1.7 1.8 30 19.0% 0.00 [-0.86 , 0.86] Scheeren 2013 (25) 1.3 1.2 26 1.8 2.2 26 17.4% -0.50 [-1.46 , 0.46] Total (95% Cl) 260 261 100.0% -0.75 [-1.37 , -0.12] \bullet Heterogeneity: Tau ² = 0 34: Chi ² = 12 62 df = 6<(P = 0.05): l ² = 52% $= 52\%$	Goepfert 2013 (28)	1.75	0.8	50	2.6	2.4	50	21.6%	-0.85 [-1.55, -0.15]			
Mayer 2010 (32) 1.7 1.6 30 1.7 1.8 30 19.0% 0.00 [-0.86, 0.86] Scheeren 2013 (25) 1.3 1.2 26 1.8 2.2 26 17.4% -0.50 [-1.46, 0.46] Total (95% Cl) 260 261 100.0% -0.75 [-1.37, -0.12] Image: Close of the second se	Kapoor 2008 (31)	2.6	0.9	13	4.9	1.8	14	16.0%	-2.30 [-3.36, -1.24]			
Scheeren 2013 (25) 1.3 1.2 26 1.8 2.2 26 17.4% $-0.50 [-1.46, 0.46]$ Total (95% CI) 260 261 100.0% $-0.75 [-1.37, -0.12]$ Heterogeneity: Tau ² = 0.34: Chi ² = 12.62 df = 6 (P = 0.05): l ² = 52%	Mayer 2010 (32)	1.7	1.6	30	1.7	1.8	30	19.0%	0.00 [-0.86, 0.86]	+		
Total (95% Cl) 260 261 100.0% -0.75 [-1.37, -0.12] Heterogeneity: Tau ² = 0.34: Chi ² = 12.62 df = 6 (P = 0.05): $l^2 = 52\%$	Scheeren 2013 (25)	1.3	1.2	26	1.8	2.2	26	17.4%	-0.50 [-1.46, 0.46]			
Test for overall effect: $Z = 2.35$ (P = 0.02)												

Applicability of pulse pressure variation: how many shades of grey?

Frederic Michard^{1*}, Denis Chemla² and Jean-Louis Teboul³

Critical Care (2015) 19:144

• impossible to interpret in pts with **spontaneous breathing activity**

Passive leg raising predicts fluid responsiveness in the critically ill*

Xavier Monnet, MD, PhD; Mario Rienzo, MD; David Osman, MD; Nadia Anguel, MD; Christian Richard, MD; Michael R. Pinsky, MD, Dr hc; Jean-Louis Teboul, MD, PhD

Crit Care Med 2006; 34:1402–1407

- impossible to interpret in pts with **spontaneous breathing activity**
- impossible to interpret in patients with **arrhythmias**

Limitations of respiratory variability indices

- impossible to interpret in pts with **spontaneous breathing activity**
- impossible to interpret in patients with **arrhythmias**
- difficult to interpret if **tidal volume** is **too low**
Intensive Care Med (2005) 31:517–523 DOI 10.1007/s00134-005-2586-4

ORIGINAL

Daniel De Backer Sarah Heenen Michael Piagnerelli Marc Koch Jean-Louis Vincent

Pulse pressure variations to predict fluid responsiveness: influence of tidal volume

- impossible to interpret in pts with **spontaneous breathing activity**
- impossible to interpret in patients with **arrhythmias**
- difficult to interpret if **tidal volume** is **too low**
- difficult to interpret if **lung compliance** is **too low**

Passive leg-raising and end-expiratory occlusion tests perform better than pulse pressure variation in patients with low respiratory system compliance

Xavier Monnet, MD, PhD; Alexandre Bleibtreu, MD; Alexis Ferre, MD; Martin Dres, MD; Rim Gharbi, MD; Christian Richard, MD; Jean-Louis Teboul, MD, PhD

Crit Care Med 2012; 40:152–157

Ability of PPV to predict fluid responsiveness in function of lung compliance

- impossible to interpret in pts with **spontaneous breathing activity**
- impossible to interpret in patients with **arrhythmias**
- difficult to interpret if **tidal volume** is **too low**
- difficult to interpret if **lung compliance** is **too low**
- difficult to interpret in case of high frequency ventilation
 PPV can be not reliable when the heart rate/respiratory rate is > 3.6

De Backer et al Anesthesiology 2009

- impossible to interpret in pts with **spontaneous breathing activity**
- impossible to interpret in patients with **arrhythmias**
- difficult to interpret if **tidal volume** is **too low**
- difficult to interpret if **lung compliance** is **too low**
- difficult to interpret in case of high frequency ventilation
- difficult to interpret under **open-chest conditions**
- difficult to interpret in case of **severe RV failure**

Mahjoub et al Crit Care Med 2009, Wyler von Ballmoos et al Crit Care 2010

- impossible to interpret in pts with **spontaneous breathing activity**
- impossible to interpret in patients with **arrhythmias**
- difficult to interpret if **tidal volume** is **too low**
- difficult to interpret if **lung compliance** is **too low**
- difficult to interpret in case of high frequency ventilation

In all these situations and in case of any doubt about interpretation other reliable dynamic tests are required ... and are now available

End-expiratory occlusion test

End-expiratory occlusion test

Fluid responders should be identified

by an increase of their CO during the end-expiration occlusion test

Xavier Monnet, MD, PhD; David Osman, MD; Christophe Ridel, MD; Bouchra Lamia, MD; Christian Richard. MD: Jean-Louis Teboul. MD. PhD

Responders $(n = 23)$	Nonresponders $(n = 11)$
22	10
18	5
6.8 ± 1.1	6.8 ± 1.1
8 ± 3	7 ± 2
53 ± 9	53 ± 5
123 ± 57	195 ± 122
0.4 ± 0.1	0.3 ± 0.1
18	5
1.0 ± 0.3	1.1 ± 0.4
	Responders (n = 23) 22 18 6.8 ± 1.1 8 ± 3 53 ± 9 123 ± 57 0.4 ± 0.1 18 1.0 ± 0.3

Xavier Monnet, MD, PhD; David Osman, MD; Christophe Ridel, MD; Bouchra Lamia, MD; Christian Richard. MD: Jean-Louis Teboul. MD. PhD

Xavier Monnet, MD, PhD; David Osman, MD; Christophe Ridel, MD; Bouchra Lamia, MD; Christian Richard, MD; Jean-Louis Teboul, MD, PhD

Xavier Monnet, MD, PhD; David Osman, MD; Christophe Ridel, MD; Bouchra Lamia, MD; Christian Richard. MD; Jean-Louis Teboul. MD. PhD

Passive leg-raising and end-expiratory occlusion tests perform better than pulse pressure variation in patients with low respiratory system compliance

Xavier Monnet, MD, PhD; Alexandre Bleibtreu, MD; Alexis Ferre, MD; Martin Dres, MD; Rim Gharbi, MD; Christian Richard, MD; Jean-Louis Teboul, MD, PhD

Crit Care Med 2012; 40:152–157

Lung compliance < 30 mL/cmH₂O End-Expiratory Occlusion Test Predicts Preload Responsiveness Independently of Positive End-Expiratory Pressure During Acute Respiratory Distress Syndrome

Serena Silva, MD^{1,2}; Mathieu Jozwiak, MD^{1,2}; Jean-Louis Teboul, MD, PhD^{1,2}; Romain Persichini, MD^{1,2}; Christian Richard, MD^{1,2}: Xavier Monnet, MD, PhD^{1,2}

Crit Care Med 2013; 41:1692–1701

	Area Under the Receiver Operating Characteristics Curve	Cutoff (% Increase in Cardiac Index)	Sensitivity (%)	Specificity (%)
Effects of the end-expiratory occlusion on cardiac index at PEEP = 5 cm H_2O	0.90 (0.75–0.98)	5	90 (56-100)	88 (68–97)
Effects of the end-expiratory occlusion on cardiac index at high PEEP	0.96 (0.82–0.99)	6	100 (75-100)	90 (70–99)

Annals of Intensive Care 2011, 1:1 REVIEW Open Access Hemodynamic parameters to guide fluid therapy Paul E Marik^{1*}, Xavier Monnet², Jean-Louis Teboul²

EDITORIAL

Passive leg raising: five rules, not a drop of fluid!

Xavier Monnet^{1,2*} and Jean-Louis Teboul^{1,2}

Crit Care 2015, 19:18

The **hemodynamic response** to **PLR**

can predict the **hemodynamic response** to **fluid infusion**

Real-time CO response to PLR

Intensive Care Med 2016

ORIGINAL

Xavier Monnet Paul Marik Jean-Louis Teboul Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis

21 clinical studies

995 patients

Monnet X, Marik PM, Teboul JL ICM in press

Passive leg-raising and end-expiratory occlusion tests perform better than pulse pressure variation in patients with low respiratory system compliance

Xavier Monnet, MD, PhD; Alexandre Bleibtreu, MD; Alexis Ferre, MD; Martin Dres, MD; Rim Gharbi, MD; Christian Richard, MD; Jean-Louis Teboul, MD, PhD

Crit Care Med 2012; 40:152–157

Jean-Christophe Richard^{1,2,3*}, Frédérique Bayle¹, Gael Bourdin¹, Véronique Leray¹, Sophie Debord¹, Bertrand Delannoy¹, Alina Cividjian Stoian^{1,2}, Florent Wallet¹, Hodane Yonis^{1,2} and Claude Guerin^{1,2,3}

Critical Care (2015) 19:5

Septic shock pts

Jean-Christophe Richard^{1,2,3*}, Frédérique Bayle¹, Gael Bourdin¹, Véronique Leray¹, Sophie Debord¹, Bertrand Delannoy¹, Alina Cividjian Stoian^{1,2}, Florent Wallet¹, Hodane Yonis^{1,2} and Claude Guerin^{1,2,3}

Critical Care (2015) 19:5

Jean-Christophe Richard^{1,2,3*}, Frédérique Bayle¹, Gael Bourdin¹, Véronique Leray¹, Sophie Debord¹, Bertrand Delannoy¹, Alina Cividjian Stoian^{1,2}, Florent Wallet¹, Hodane Yonis^{1,2} and Claude Guerin^{1,2,3}

Critical Care (2015) 19:5

Jean-Christophe Richard^{1,2,3*}, Frédérique Bayle¹, Gael Bourdin¹, Véronique Leray¹, Sophie Debord¹, Bertrand Delannoy¹, Alina Cividjian Stoian^{1,2}, Florent Wallet¹, Hodane Yonis^{1,2} and Claude Guerin^{1,2,3}

Critical Care (2015) 19:5

	Control Preload dependence	
	(n = 30)	(n = 30)
Intravascular volume expansion ITT (mL.day ⁻¹)	986 [654-1,624]	446 [295-1,105] *
Intravascular volume expansion PP (mL.day ⁻¹)	917 [639-1,511]	383 [211-604] *
RBC transfusion (mL.day ⁻¹)	178 [82-304]	103 (0-183] *

Decision of starting fluid administration

- presence of **hemodynamic instability/peripheral hypoperfusion** (mottled skin, hypotension, oliguria, hyperlactatemia...)
- <u>and</u> presence of **preload responsiveness**
- and limited risks of fluid overload

Decision of stopping fluid administration

- <u>either</u> disappearance of **hemodynamic instability**
- <u>or</u> presence of preload **unresponsiveness**
- or high risks of fluid overload or severe hypoxemic lung injury

Intensive Care Med (2007) 33:575–590	INTERNATIONAL CONSENSUS CONFERENCE	Intensive Care Med (2014) 40:1795–1815	CONFERENCE REPORTS AND EXPERT PANEL
Massimo Antonelli Mitchell Levy Peter J. D. Andrews Jean Chastre Leonard D. Hudson Constantine Manthous G. Umberto Meduri Rui P. Moreno Christian Putensen Thomas Stewart Antoni Torres	Hemodynamic monitoring in shock and implications for management International Consensus Conference, Paris, France, 27–28 April 2006	Maurizio Cecconi Daniel De Backer Massimo Antonelli Richard Beale Jan Bakker Christoph Hofer Roman Jaeschke Alexandre Mebazaa Michael R. Pinsky Jean Louis Teboul Jean Louis Vincent Andrew Rhodes	Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine

Topic

ICM Antonelli 2007

We do not recommend the routine use of dynamic measures of fluid responsiveness (including but not limited to pulse pressure variation, aortic flow changes, systolic pressure variation, respiratory systolic variation test, collapse of vena cava).

```
Level 1; QoE high (A)
```

There may be some advantage to these me Level 1; QoE high (A) We recommend using **dynamic** over static **variables** to predict fluid responsiveness, when applicable.

Level 1; QoE moderate (B)

Hemodynamic consequences of Mechanical Insufflation

• Venous return More marked Tool to asse By findtresponsiveness in cases of hypovolemia • LV filling

• LV ejection Thank you