TROUBLES ACIDO-BASIQUES PHYSIOLOGIE

Dr Mokline. A & Dr Bousselmi. K Sce Réa des Brulés. CHU B Arous

PLAN

- 1. Introduction
- 2. Concepts physiopathologiques des troubles acido-basiques
- 3. Physiopathologie des troubles acido-basiques
- 4. Régulation du pH: systèmes tampons
- 5. Conclusion

1. Introduction

- L'interprétation d'une acidose ou d'une alcalose nécessite une connaissance des notions physiopathologiques
- 2 concepts:
- ➤ Concept classique d'<u>Henderson-Hasselbach</u> (1908 et 1916)
- Concept électrochimique de <u>Stewart</u> (Can J Physiol Pharmacol 1983): mécanismes des troubles ac basiques (TAB) et Dg trouble complexe

2. Concepts physiopathologiques des troubles acidobasiques (1)

2.1. Equation d'Henderson-Hasselbach

```
Henderson (1908) : loi action de masse [H^+] \times [HCO_3^-] = K \times [CO_2] \times [H_2O]
```

Hasselbach (1916) $[H^+] = K \times [CO_2] / [HCO_3^-]$

Henderson-Hasselbach (1916) $pH = pK_1 + log [HCO_3] / S PaCO_2$

- Henderson-Hasselbach (1908 et 1916)
 - pH est dépendant de 2 variables
 - Concentration de HCO₃ plasmatique
 - PaCO₂
 - Les changements de bicarbonate plasmatique influencent directement le pH: bicarbonate est CENTRAL
- Malgré son exactitude mathématique, cette équation présente des points faibles par ignorance de:
 - la dépendance entre PaCO2 et Bicar
 - la présence des tampons non volatils, non-bicarbonates (protéines plasmatiques)
 - le rôle des acides faibles (phosphate, albuminate)

2. Concepts physiopathologiques des troubles acidobasiques (2)

2.2. Concept de Sigaard Andersen

- Base Excess (BE)
- quantité d'acide ou de base fortes à ajouter pour atteindre pH normal (PCO2 à 40 mmHg et température à 37°C).
- **□** BE: s'affranchit des variations de PaCO2
 - mesure in vitro
 - Base Excess Standard (SBE): Hb 5 g/100ml
 - ne différencie pas entre variation acides faibles et acides forts

2. Concepts physiopathologiques des troubles acidobasiques (3)

2.3. Approche « physico-chimique » de Stewart

- Raisons: Approche classique
 - Ne prend pas en compte tampons non bicarbonate
 - Non mécanistique
 - Ne quantifie pas le trouble
 - Limitée dans acidose de « dilution », désordres complexes en réa

Préceptes

- _ pH: dissociation de l'eau plasmatique
- Eau importante source d'ions H⁺
- Force ionique : lons forts et ions faibles
- Neutralité électrique
- Notion de variables dépendantes et de variables indépendantes

□ Concepts:

- Plasma : solution aqueuse exposée à une PaCO₂ constante + mélange d'ions fortement dissociés et d'acides faibles.
- Variations de [HCO₃-]: pas cause mais conséquence d'un trouble métabolique acido-basique.
- pH (= [H+]) et bicarbonates variables <u>dépendantes</u> résultant de l'effet de 3 variables <u>indépendantes</u>
 - Différence en ions forts: SID (Cations forts Anions forts plasmatiques)
 - Atot (masse total des ac faibles)
 - PaCO₂
- Respect de 3 lois physicochimiques élémentaires SIMULTANEMENT
 - Dissociation électrochimique
 - Electroneutralité des solutions
 - Conservation des masses

Concept de Stewart à 6 équations

- [H+] obéit à 6 équations simultanément
 - Équilibre de dissociation de l'eau

Équilibre de dissociation des acides faibles

$$\checkmark$$
 [H⁺] \times [A⁻] = [HA] \times KA

Équilibre de formation des bicarbonates

$$\checkmark$$
 [H+] x [HCO3-] = Kc x S x PCO2

Équilibre de formation des ions carbonates

$$\checkmark$$
 [H⁺] × [CO²₃⁻] = K₃ × [HCO₃⁻]

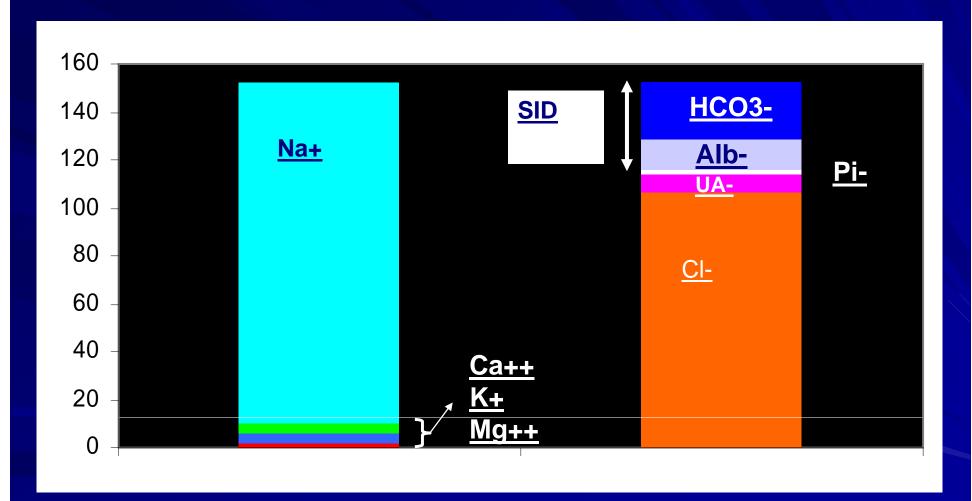
Neutralité électrique

$$\checkmark$$
 [H⁺] + [SID] = [HCO₃] + [A⁻] + [CO²₃] + [OH]

Conservation de masse de A

$$\checkmark$$
 [HA] + [A⁻] = [A_{TOT}]

Résolution

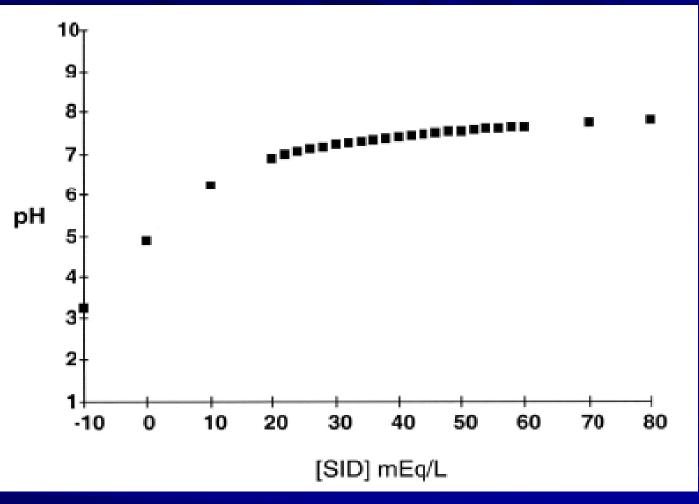

$$[H^+]^4 + ([SID] + KA) \times [H^+]^3 + (KA \times [SID] - [A_{707}]) - K'_w - Kc \times PCO_2) \times [H^+]^2 - (KA \times (K'_w + Kc \times PCO_2) - K_3 \times Kc \times PCO_2) \times [H^+] - KA \times K_3 \times Kc \times PCO_2 = 0$$

Stewart : pH = pK₁ + log [SID - Atot/(1+10 pKa-pH)/ S PaCO₂]

Calcul du SID

- Différence de charge entre l'ensemble des cations forts et l'ensemble des anions forts
- SIDa = $(Na^+ + K^+ + Ca^{2+} + Mg^{2+} + UC^+) (Cl^- + UA^-)$
 - UC+ = somme des cations forts autres que Na+, K+, Ca²+, Mg²+ (± négligeable)
 - UA⁻ = somme des anions forts <u>autres que Cl</u>: sels d'acides organiques (lactate, acido-acétate, OH butyrate, citrate...) et anions minéraux (sulfates) et ...
- Valeur normale 40 ± 2 mEq/l
 - Si < 38 : acidose métabolique (Excés d'Ac forts ou baisse des cations)
 - Si > 38 : alcalose métabolique

Gamblegram du plasma


cations

<u>anions</u>

Le SID: comment cela marche?

$$Σ$$
 cations < $Σ$ anions ⇒ SID < 0
+ < - ⇒ ↑ + pour éléctroneutralité
⇒ ↑ H⁺ ⇒ ↓ pH ⇒ acidose

- □ Différence de charges ⇒ force sur les autres molécules non (totalement) dissociées ⇒ dissociation pour EQUILIBRE des charges
- □ Si toutes les molécules sont dissociées dans une solution aqueuse, la seule autre source d'ions est l' EAU qui se dissocie en H+ et OH-
- □ Ψ SID $\Rightarrow \uparrow \uparrow$ dissociation $H_2O \Rightarrow \uparrow \uparrow H_+ \Rightarrow$ acidose

Kellum Kidney Int 1998

Calcul de A_{TOT}

- CONCENTRATION TOTALE DES ACIDES FAIBLES NON VOLATILES DISSOCIES DANS LA SOLUTION
- CE QUI INTERVIENT EST LEUR FORME ANIONIQUE (A-)
- ALBUMINE
 - albuminate effet charge de l'albumine
 - = [albumine, g/L] x (0,123 x pH 0,631) (Figge J Lab Clin Med 1991)
 - = [albumine, g/L] x 0,28
 - 75% des charges négatives du TA
 - Valeur normale = 12,1 mEq/L
- PHOSPHATE
 - Pi = [Pi, mmol/l] x (0,309 x pH 0,469) (Figge L Lab Clin Med 1992)
 - = [phosphore, mmol/L] x 1,8
 - Valeur normale = 2,1 mEq/L
- \blacksquare ATOT = 14,2 mEq/L

Approche de Stewart

AVANTAGES

- Mécanismes
- Débrouiller les situations complexes de réanimation
- Pourrait permettre un traitement plus adapté

INCONVENIENTS

- Calculs nombreux avec risque d'erreur
- Tout le NaCl n'est pas dissocié!
- Les variables indépendantes le sont-elles et jusqu'où ?
- Pas encore de niveau preuve suffisant montrant que son application en clinique change le devenir du patient

3. Physiopathologie et classification des troubles acido-basiques

3.1. Physiopathologie:

3.1.1. Troubles métaboliques:

Approche Henderson-Hasselbach: Variations de $[HCO_3^-] \leftarrow Variations [H+]$

Concept de Stewart: Variations SID et des ac faibles (Atot)

3.1.2. Troubles respiratoires:

La PaCO2 est la variable déterminante des troubles respiratoires en se basant sur les 2 concepts

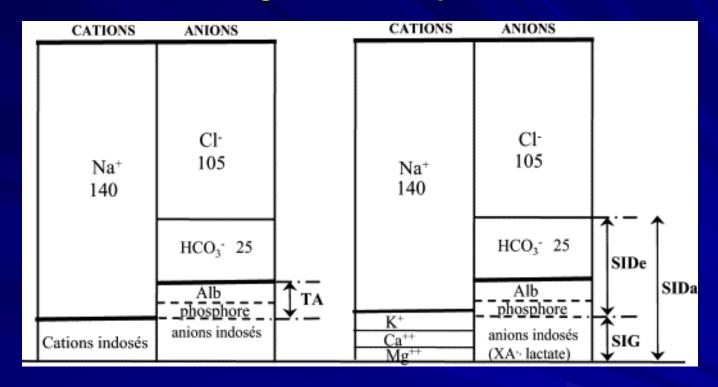
3.2. Classification des troubles acido-basiques:

Les outils nécessaires à l'établissement du diagnostic d'un déséquilibre acido basique sont:

Gaz du sang artériels:

pH (7,40 \pm 2) Base Excess (0 meq/l); PaCO₂ (40 \pm 4 mmHg); HCO₃⁻ calculés (24 \pm 2 mmol/l)

Base Excess (0 meq/l) et Standard Base Excess (0 meq/l)

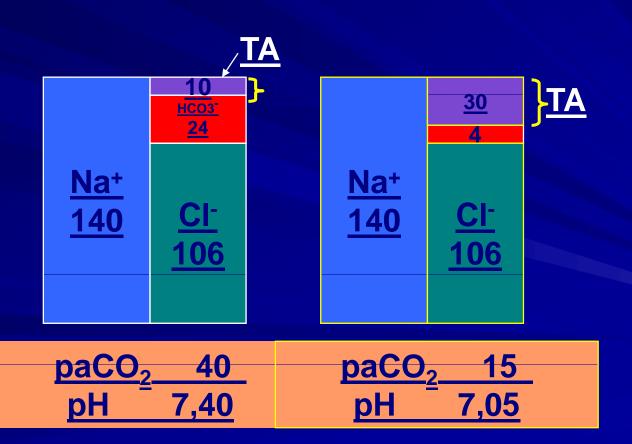

Albumine (40 g/l); **Phosphore** (0,8 – 1,2 mmol/l)

Ionogramme sanguin:

 CO_2 total (26 ± 2 mmol/l) Na⁺ (140 ± 2 mmol/l) ; K⁺ (3,5 ± 0,5 mmol/l) Cl⁻ (105 ± 2 mmol/l)

- **TA** = $Na^+ (Cl^- + HCO_3^-) = 12 \pm 2 \text{ meg/l}$
- TA corrigé = TA calculé + 0,25 × (40 albumine mesurée [g/l])
- SIDe = $[HCO_3^-]$ + $[albumine (g/l) \times (0,123 \times pH 0,631)]$ + $phosphore (meq/l) \times (0,309 \times pH 0,469)]$ = $40 \pm 2 \text{ meq/l}$
- **SIDa** = $(Na^+ + K^+ + Ca^{++} + Mg^{++}) (Cl^+ + lactate^-) = 40 \pm 2 \text{ meg/l}$
- SIG = SID SIDe = 0 meq/l (meilleur indicateur de la présence d'anions indosés)

Représentation de la balance des charges positives et négatives dans le plasma.



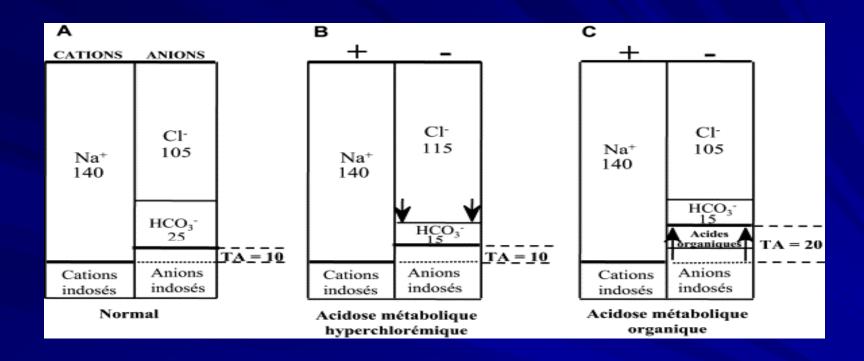
TA: trou anionique plasmatique ; Les cations indosés comprennent le Ca⁺⁺ et Mg⁺⁺. Le trou anionique est constitué d'anions indosés mais aussi d'acides organiques faibles, c'est-à-dire albuminate et phosphate. Ce TA est normalement égal à 12 meq/l ; il est normalement augmenté en cas d'accumulation plasmatique acides organiques (lactate, corps cétoniques).

<u>SIDa:</u> « strong ion difference » apparent ; <u>SIDe:</u> « strong ion difference » effectif ; <u>SIG:</u> « strong ion gap ». Le SID est toujours positif, normalement égal à 40 meq/l. La différence entre SIDe et SID est normalement égale à zéro sauf s'il y a accumulation d'anions indosés dont la présence sera attestée par la présence <u>d'un SIG</u>.

TROU ANIONIQUE PLASMATIQUE (1970)

T.A. =
$$(Na + K^+) - (HCO_3^- + Cl^-)$$

Normal 12 ± 2 (10-14 mmol/l



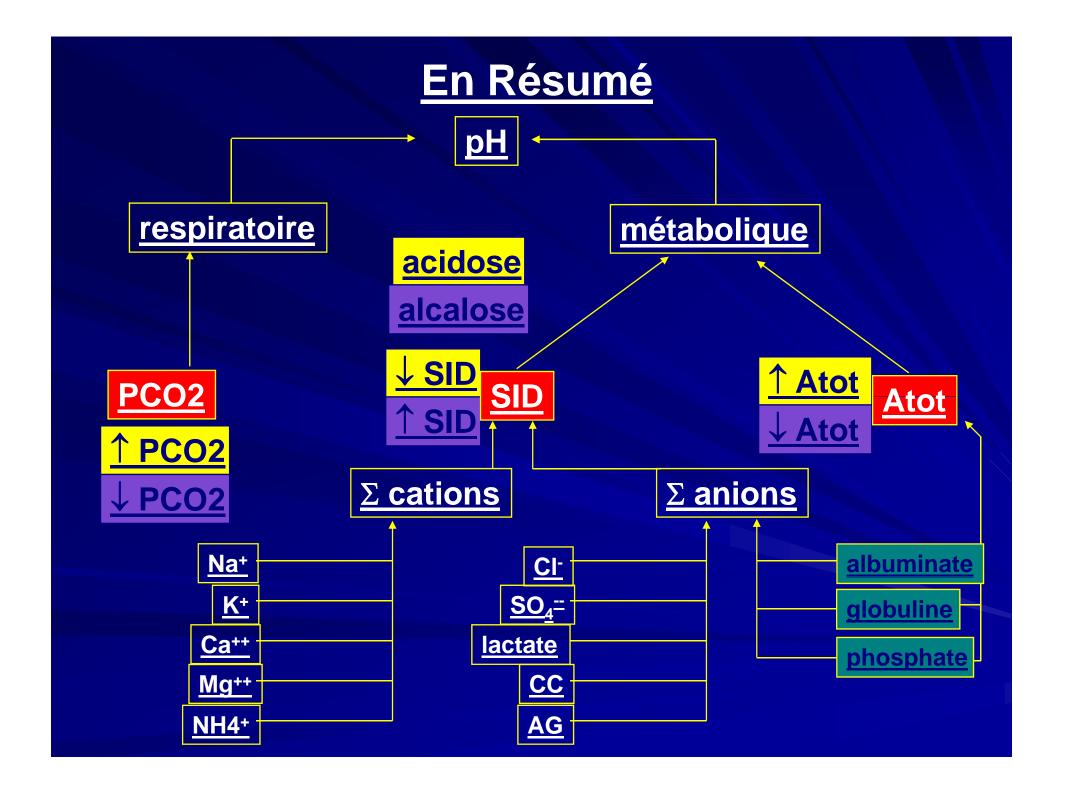
Rôle de l'hypoalbuminémie

- TA connait des limites en rapport avec son principal constituant l'albumine d'où:
 - Hyperalbuminémie acidifie
 - Hypoalbuminémie alcalinise
 - Hypoalbuminémie sous-estime acidose
 - Hypoalbuminémie sous-estime le TA

TA_{ajusté} = TA_{mesuré} + 0,25 x (alb normale – alb mesurée) (g/l)

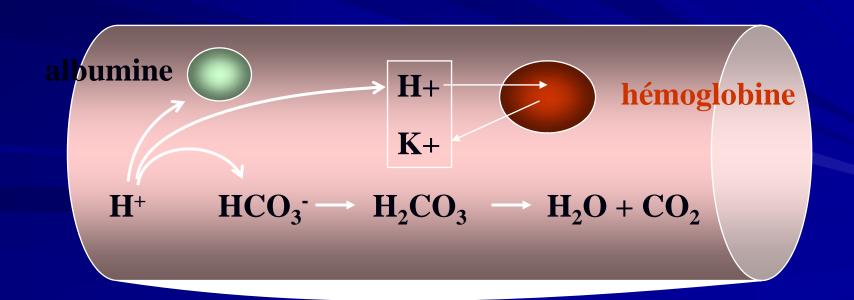
Représentation schématique des deux grandes catégories d'acidoses métaboliques

- A. TA: la différence entre la somme des indosés anioniques et des indosés cationiques.
- B. AM minérales: chaque HCl en excès libère un ion H+ tamponné par un ion HCO₃⁻ et un Cl⁻ ; le TA est donc normal.
- C: AM organiques: chaque acide organique en excès libère un ion H+ tamponné par un ion HCO₃- et un sel d'acide+ qui est un anion ; le TA est donc élevé supérieur à 12 mmol/l.

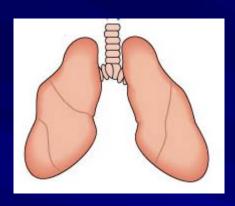

Annales Françaises d'anesthésie et de Réa 2007

Classification des déséquilibres acido-basiques selon l'approche de Stewart

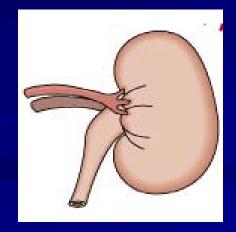
	Acidosis	Conséquences thérapeutiques
I. Respiratory	↑ Pco ₂	
II. Nonrespiratory (metabolic)		
1. Abnormal SID 😈		
a. Water excess/	\downarrow SID, \downarrow [Na ⁺]	↑ SID ↑ Na+
 b. Imbalance of strong anions 		
i. Chloride excess	↓ sid, ↑ [cl ⁻]	<u> </u>
ii. Unidentified anion excess‡	↓ SID, ↑ [XA-]	↑ <u>SID </u>
2. Nonvolatile weak acids 🛖		XA-
a. Serum albumin	↑ [Alb] [§]	<u> </u>
b. Inorganic phosphate	1 [Pi]	JL A
		<u> </u>
Clanary Clanbox [Not]norm	/[No.loho	<u>♥ PI</u>


Cl⁻ corr = Cl⁻ obs x [Na⁺]norm /[Na₊]obs Excès Cl = Clobs - Cl corr

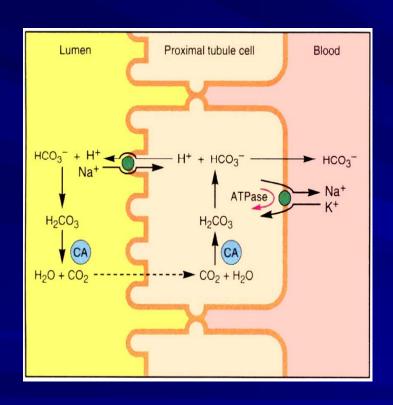
Fenci AJRCCM 2000



4. La régulation du pH: Systèmes tampons


- intra-cellulaires : protéines (hémoglobine), phosphates, HCO₃-
- <u>extra-cellulaires</u>: HCO₃-, protéines (albumine)
- → défense immédiate

BILAN H+: sortie



Poumons: CO2, protons volatils: défense semi-retardée

- Rein: défense tardive
- Réabsorption des HCO3
- Excrétion des H+:
 - NH4+
 - AT
 - H+ libres

BILAN H+: sortie

■ TUBE PROXIMAL:

- réabsorber les HCO3- filtrés
 - Role de l'anhydrase carbonique
 - Tm HCO3- (28 mmol/l)

■ TUBE DISTAL ET COLLECTEUR:

- Eliminer les H+
- Régénérer de nouveaux HCO3-

AMMONIURIE

- Sécrétion de H+ la plus importante: 2/3
- Mécanisme très adaptable (X 6)
- Estimation par le calcul du trou urinaire:
 - Ta U = Na + K- Cl (NH4Cl)
 - TAU NI > 0
- Si ammoniurie élevée (>70 mmol/l): Ta U (réponse adaptée du rein origine extra-rénale
- Si ammoniurie basse (< 50 mmol/l): Ta U + (réponse inadaptée du rein) origine rénale

5. Conclusion

- Prise en charge des désordres acido-basique métabolique «eminence-based medicine».
- L'approche traditionnelle d'Henderson reste toujours la plus utilisable
 - Les variables d'intérêt sont pH, PaCO₂ et SBE.
- Approche de Stewart peut apporter des informations pertinentes en cas de désordres complexes, en réanimation:
 - Distance sodium-chlore
 - Hypoalbuminémie

Et permet d'adapter les thérapeutiques les plus appropriées.